RGO/KMn8O16 composite as supercapacitor electrode with high specific capacitance

被引:21
作者
Guan, Hongtao [1 ,2 ]
Dang, Wenhui [1 ]
Chen, Gang [1 ]
Dong, Chengjun [1 ]
Wang, Yude [1 ,2 ]
机构
[1] Yunnan Univ, Dept Mat Sci & Engn, Kunming 650091, Peoples R China
[2] Yunnan Univ, Yunnan Prov Key Lab Micronano Mat & Technol, Kunming 650091, Peoples R China
关键词
Powders: chemical preparation; Nanostructures; Electrochemical properties; Transitional metal oxides; HIGH-PERFORMANCE ELECTRODES; HYDROTHERMAL SYNTHESIS; MANGANESE OXIDE; ELECTROCHEMICAL PROPERTIES; KMN8O16; NANORODS; MNO2; NANOCOMPOSITES; ARRAYS; CARBON; FACILE;
D O I
10.1016/j.ceramint.2015.12.043
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reduced graphene oxide/cryptomelane (RGO/KMn8O16) composites are successfully synthesized from alpha-MnO2 nanorods and GO using a water-bathing precipitation method. The unique structure of KMn8O16 nanorods, with a length of 2-4 mu m, dispersed on the surface of RGO leads to a much enhanced electrical conductivity and ionic transport, finally achieving composites with an improved electrochemical performance. Electrochemical measurement results show a specific capacitance of 222.3 F/g at a current density of 0.2 A/g, much higher than that of the original alpha-MnO2. After 500 cycles at 2.0 A/g, the RGO/KMn8O16 composite electrode still retains 92.6% of its initial specific capacitance. The excellent electrochemical performance and durability observed for this composite electrode suggest its potential application for electrochemical capacitors. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:5195 / 5202
页数:8
相关论文
共 43 条
[1]   Vanadium oxide aerogels: Nanostructured materials for enhanced energy storage [J].
Augustyn, Veronica ;
Dunn, Bruce .
COMPTES RENDUS CHIMIE, 2010, 13 (1-2) :130-141
[2]   Direct Redox Deposition of Manganese Oxide on Multiscaled Carbon Nanotube/Microfiber Carbon Electrode for Electrochemical Capacitor [J].
Bordjiba, Tarik ;
Belanger, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (05) :A378-A384
[3]   Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal [J].
Chandra, Vimlesh ;
Park, Jaesung ;
Chun, Young ;
Lee, Jung Woo ;
Hwang, In-Chul ;
Kim, Kwang S. .
ACS NANO, 2010, 4 (07) :3979-3986
[4]   Microwave-Hydrothermal Crystallization of Polymorphic MnO2 for Electrochemical Energy Storage [J].
Chen, Kunfeng ;
Noh, Young Dong ;
Li, Keyan ;
Komarneni, Sridhar ;
Xue, Dongfeng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (20) :10770-10779
[5]   Nanostructured morphology control for efficient supercapacitor electrodes [J].
Chen, Sheng ;
Xing, Wei ;
Duan, Jingjing ;
Hu, Xijun ;
Qiao, Shi Zhang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (09) :2941-2954
[6]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[7]   Formation of magnetic clusters in the strongly frustrated hollandite vanadium oxide V7.22O8(OH)8Cl0.77(H3O)2.34 [J].
Chernova, Natasha A. ;
Ngala, J. Katana ;
Zavalij, Peter Y. ;
Whittingham, M. Stanley .
PHYSICAL REVIEW B, 2007, 75 (01)
[8]   Sol-gel route to the tunneled manganese oxide cryptomelane [J].
Ching, S ;
Roark, JL ;
Duan, N ;
Suib, SL .
CHEMISTRY OF MATERIALS, 1997, 9 (03) :750-754
[9]   Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (11) :4406-4417
[10]   Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method [J].
Ding, YS ;
Shen, XF ;
Sithambaram, S ;
Gomez, S ;
Kumar, R ;
Crisostomo, VMB ;
Suib, SL ;
Aindow, M .
CHEMISTRY OF MATERIALS, 2005, 17 (21) :5382-5389