Fast algorithms for detecting overlapping functional modules in protein-protein interaction networks

被引:0
作者
Sun, Peng Gang [1 ]
Gao, Lin [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
来源
CIBCB: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY | 2009年
关键词
ICPM; CPM; functional modules; protein localization; protein complexes; COMMUNITY STRUCTURE; COMPLEXES; LOCALIZATION; ANNOTATION; SCALE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accumulating evidence suggests that biological systems are composed of interacting, separable, functional modules which is that groups of vertices within which connections are dense but between which they are sparse. Identifying these modules is likely to capture the biologically meaningful interactions. In recent years, many algorithms have been developed for detecting such structures. These algorithms however are computationally demanding, which limits their application. The existing deterministic methods used for large networks find separated modules, whereas most of the actual networks are made of highly overlapping cohesive groups of vertices. In this paper, we propose an iterative-clique percolation method (ICPM) for identifying overlapping modules in PPI (protein-protein interaction) networks. Our method is based on clique percolation method (CPM) which not only considers the degree of nodes to minimize the search space (The vertices in k-cliques must have the degree of k-1 at least), but also converts k-cliques to (k-1)-cliques. It uses (k-l)-cliques by appending one node to (k-1)-cliques for finding k-cliques. Furthermore, since the PPI network is noisy and still incomplete, some methods treat the PPI networks as weighted graphs in which each edge (e.g., interaction) is associated with a weight representing the probability or reliability of that interaction for preprocessing and purifying PPI data. Thus, we extend the ICPM into weighted networks which takes into account the link weights in a more delicate way by incorporating the subgraph intensity. We test our method on both computer-generated and PPI networks. Our analysis of the yeast PPI network suggests that most of these modules have well-supported biological significance in the context of protein localization, function annotation, protein complexes.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 37 条
[1]  
ANGELINI L, 2006, CONDMAT0610182
[2]   Iterative cluster analysis of protein interaction data [J].
Arnau, V ;
Mars, S ;
Marín, I .
BIOINFORMATICS, 2005, 21 (03) :364-378
[3]   An ensemble framework for clustering protein-protein interaction networks [J].
Asur, Sitaram ;
Ucar, Duygu ;
Parthasarathy, Srinivasan .
BIOINFORMATICS, 2007, 23 (13) :I29-I40
[4]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[5]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[6]   Superparamagnetic clustering of data [J].
Blatt, M ;
Wiseman, S ;
Domany, E .
PHYSICAL REVIEW LETTERS, 1996, 76 (18) :3251-3254
[7]   Evaluation of clustering algorithms for protein-protein interaction networks [J].
Brohee, Sylvain ;
van Helden, Jacques .
BMC BIOINFORMATICS, 2006, 7 (1)
[8]   Topological structure analysis of the protein-protein interaction network in budding yeast [J].
Bu, DB ;
Zhao, Y ;
Cai, L ;
Xue, H ;
Zhu, XP ;
Lu, HC ;
Zhang, JF ;
Sun, SW ;
Ling, LJ ;
Zhang, N ;
Li, GJ ;
Chen, RS .
NUCLEIC ACIDS RESEARCH, 2003, 31 (09) :2443-2450
[9]   Detecting functional modules in the yeast protein-protein interaction network [J].
Chen, Jingchun ;
Yuan, Bo .
BIOINFORMATICS, 2006, 22 (18) :2283-2290
[10]   Semantic integration to identify overlapping functional modules in protein interaction networks [J].
Cho, Young-Rae ;
Hwang, Woochang ;
Ramanathan, Murali ;
Zhang, Aidong .
BMC BIOINFORMATICS, 2007, 8 (1)