An algorithmic construction of optimal minimax designs for heteroscedastic linear models

被引:7
|
作者
Brown, LD
Wong, WK
机构
[1] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
关键词
approximate designs; efficiency function; extrapolation; information matrix;
D O I
10.1016/S0378-3758(99)00073-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct optimal designs to minimize the maximum variance of the fitted response over an arbitrary compact region. An algorithm is proposed for finding such optimal minimax designs for the simple linear regression model with heteroscedastic errors. This algorithm always finds the optimal design in a few simple steps. For more complex models where there is a symmetric error variance structure, we suggest a strategy to help find some hitherto elusive optimal minimax designs. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 50 条