An algorithmic construction of optimal minimax designs for heteroscedastic linear models

被引:7
|
作者
Brown, LD
Wong, WK
机构
[1] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
关键词
approximate designs; efficiency function; extrapolation; information matrix;
D O I
10.1016/S0378-3758(99)00073-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct optimal designs to minimize the maximum variance of the fitted response over an arbitrary compact region. An algorithm is proposed for finding such optimal minimax designs for the simple linear regression model with heteroscedastic errors. This algorithm always finds the optimal design in a few simple steps. For more complex models where there is a symmetric error variance structure, we suggest a strategy to help find some hitherto elusive optimal minimax designs. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 50 条
  • [21] Optimal Designs for Random Coefficient Regression Models with Heteroscedastic Errors
    Cheng, Jing
    Yue, Rong-Xian
    Liu, Xin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (15) : 2798 - 2809
  • [22] A-Optimal designs for mixture polynomial models with heteroscedastic errors
    Yan, Fei
    Li, Junpeng
    Jiang, Haosheng
    Zhang, Chongqi
    AIMS MATHEMATICS, 2023, 8 (11): : 26745 - 26757
  • [23] Optimal experimental designs for treatment contrasts in heteroscedastic models with covariates
    Rosa, Samuel
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 209 : 280 - 291
  • [24] Optimal Bayesian designs for models with partially specified heteroscedastic structure
    Dette, H
    Wong, WK
    ANNALS OF STATISTICS, 1996, 24 (05): : 2108 - 2127
  • [25] D-OPTIMUM DESIGNS FOR HETEROSCEDASTIC LINEAR-MODELS
    ATKINSON, AC
    COOK, RD
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) : 204 - 212
  • [26] ON THE EQUIVALENCE OF D-OPTIMAL AND G-OPTIMAL DESIGNS IN HETEROSCEDASTIC MODELS
    WONG, WK
    STATISTICS & PROBABILITY LETTERS, 1995, 25 (04) : 317 - 321
  • [27] CONSTRUCTION OF THE DOMAINS OF OPTIMAL DESIGNS FOR PARAMETRICALLY NON-LINEAR MODELS
    FOMIN, GA
    FOMINA, ES
    INDUSTRIAL LABORATORY, 1978, 44 (07): : 972 - 975
  • [28] Algorithmic construction of R-optimal designs for second-order response surface models
    Liu, Xin
    Yue, Rong-Xian
    Xu, Jing
    Chatterjee, Kashinath
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 178 : 61 - 69
  • [29] LocallyD-optimal designs for heteroscedastic polynomial measurement error models
    Zhang, Min-Jue
    Yue, Rong-Xian
    METRIKA, 2020, 83 (06) : 643 - 656
  • [30] An algorithmic construction of e (s 2)-optimal supersaturated designs
    Koukouvinos C.
    Mylona K.
    Simos D.E.
    Journal of Statistical Theory and Practice, 2011, 5 (2) : 357 - 367