An algorithmic construction of optimal minimax designs for heteroscedastic linear models

被引:7
|
作者
Brown, LD
Wong, WK
机构
[1] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
关键词
approximate designs; efficiency function; extrapolation; information matrix;
D O I
10.1016/S0378-3758(99)00073-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct optimal designs to minimize the maximum variance of the fitted response over an arbitrary compact region. An algorithm is proposed for finding such optimal minimax designs for the simple linear regression model with heteroscedastic errors. This algorithm always finds the optimal design in a few simple steps. For more complex models where there is a symmetric error variance structure, we suggest a strategy to help find some hitherto elusive optimal minimax designs. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 50 条
  • [1] Optimal minimax designs for prediction in heteroscedastic models
    King, J
    Wong, WK
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 69 (02) : 371 - 383
  • [2] Minimax robust designs for regression models with heteroscedastic errors
    Kai Yzenbrandt
    Julie Zhou
    Metrika, 2022, 85 : 203 - 222
  • [3] Minimax robust designs for regression models with heteroscedastic errors
    Yzenbrandt, Kai
    Zhou, Julie
    METRIKA, 2022, 85 (02) : 203 - 222
  • [4] D-Optimal Designs for Hierarchical Linear Models with Heteroscedastic Errors
    Xin Liu
    Rong-Xian Yue
    Kashinath Chatterjee
    Communications in Mathematics and Statistics, 2022, 10 : 669 - 679
  • [5] D-Optimal Designs for Hierarchical Linear Models with Heteroscedastic Errors
    Liu, Xin
    Yue, Rong-Xian
    Chatterjee, Kashinath
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (04) : 669 - 679
  • [6] Minimax A-, c-, and I-optimal regression designs for models with heteroscedastic errors
    Abousaleh, Hanan
    Zhou, Julie
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (01): : 258 - 274
  • [7] Integer-valued, minimax robust designs for estimation and extrapolation in heteroscedastic, approximately linear models
    Fang, ZD
    Wiens, DP
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) : 807 - 818
  • [8] Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial model
    Chen, Ray-Bing
    Wong, Weng Kee
    Li, Kun-Yu
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1914 - 1921
  • [9] COMPROMISE DESIGNS IN HETEROSCEDASTIC LINEAR-MODELS
    DASGUPTA, A
    MUKHOPADHYAY, S
    STUDDEN, WJ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 32 (03) : 363 - 384
  • [10] Bayesian and maximin optimal designs for heteroscedastic regression models
    Dette, H
    Haines, LM
    Imhof, LA
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 221 - 241