Harmonic maps and rigidity theorems for spaces of nonpositive curvature

被引:7
作者
Jost, J
Yau, ST
机构
[1] Max Planck Inst Math, D-04103 Leipzig, Germany
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
10.4310/CAG.1999.v7.n4.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:681 / 694
页数:14
相关论文
共 14 条
[1]  
Alber S.I., 1964, SOV MATH DOKL, V5, P700
[2]  
Alber SI., 1967, SOV MATH DOKL, V9, P6
[4]  
EBERLEIN P, 1983, ERGOD THEOR DYN SYST, V3, P47
[5]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[6]   SOME RELATIONS BETWEEN METRIC STRUCTURE AND ALGEBRAIC STRUCTURE OF FUNDAMENTAL GROUP IN MANIFOLDS OF NONPOSITIVE CURVATURE [J].
GROMOLL, D ;
WOLF, JA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (04) :545-&
[7]  
GROMOV M, 1992, PUBL MATH IHES, V76, P165
[8]   ON HOMOTOPIC HARMONIC MAPS [J].
HARTMAN, P .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04) :673-&
[9]   EQUILIBRIUM MAPS BETWEEN METRIC-SPACES [J].
JOST, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (02) :173-204
[10]   Generalized Dirichlet forms and harmonic maps [J].
Jost, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1997, 5 (01) :1-19