Chip calorimeters for the investigation of liquid phase reactions: Design rules

被引:22
作者
Lerchner, J.
Wolf, A.
Wolf, G.
Fernandez, I.
机构
[1] TU Bergakad Freiberg, Inst Phys Chem, D-09596 Freiberg, Germany
[2] Univ Politecn Cataluna, CIRG DF A ETSECCPB, E-08034 Barcelona, Spain
关键词
chip calorimetry; heat transfer; calorimeter simulation; models; accuracy;
D O I
10.1016/j.tca.2006.04.020
中图分类号
O414.1 [热力学];
学科分类号
摘要
Rules for the design of silicon chip based devices for liquid phase calorimetry are discussed. In contrast to the study of fast reactions the investigation of slow processes like the metabolic heat production requires sample volumes of at least a few micro-liters if a signal resolution in the mW l(-1) range is necessary. On the other hand, increasing sensitivity gradients inside the reaction chamber and external temperature perturbations restrict its enlargement. Therefore, a careful optimization of the device with respect to the sample volume is necessary if one likes to use the advantages of chip calorimeters. The presented study was performed by use of a new designed flow-through chip calorimeter. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 17 条
[1]   Identification of micro-scale calorimetric devices - IV. Descriptive models in 3-D [J].
Auguet, C ;
Lerchner, J ;
Marinelli, P ;
Martorell, F ;
de Rivera, MR ;
Torra, V ;
Wolf, G .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2003, 71 (03) :951-966
[2]   Highly sensitive thermopile heat power sensor for micro-fluid calorimetry of biochemical processes [J].
Baier, V ;
Födisch, R ;
Ihring, A ;
Kessler, E ;
Lerchner, J ;
Wolf, G ;
Köhler, JM ;
Nietzsch, M ;
Krügel, M .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 123-24 :354-359
[3]   A test reaction from macrocyclic chemistry for calorimetric titrations [J].
Buschmann, HJ ;
Schollmeyer, E .
THERMOCHIMICA ACTA, 1999, 333 (01) :49-53
[4]   Discrete periodic melting point observations for nanostructure ensembles [J].
Efremov, MY ;
Schiettekatte, F ;
Zhang, M ;
Olson, EA ;
Kwan, AT ;
Berry, RS ;
Allen, LH .
PHYSICAL REVIEW LETTERS, 2000, 85 (17) :3560-3563
[5]   Calorimetry of microbial growth using a thermopile based microreactor [J].
Higuera-Guisset, J ;
Rodríguez-Viejo, J ;
Chacón, M ;
Muñoz, FJ ;
Vigués, N ;
Mas, J .
THERMOCHIMICA ACTA, 2005, 427 (1-2) :187-191
[6]   Micromachined nanocalorimetric sensor for ultra-low-volume cell-based assays [J].
Johannessen, EA ;
Weaver, JMR ;
Bourova, L ;
Svoboda, P ;
Cobbold, PH ;
Cooper, JM .
ANALYTICAL CHEMISTRY, 2002, 74 (09) :2190-2197
[7]   A new micro-fluid chip calorimeter for biochemical applications [J].
Lerchner, J ;
Wolf, A ;
Wolf, G ;
Baier, V ;
Kessler, E ;
Nietzsche, M ;
Krügel, M .
THERMOCHIMICA ACTA, 2006, 445 (02) :144-150
[8]   Direct monitoring of biochemical processes using micro-structured heat power detectors [J].
Lerchner, J ;
Wolf, A ;
Hüttl, R ;
Wolf, G .
CHEMICAL ENGINEERING JOURNAL, 2004, 101 (1-3) :187-194
[9]   Determination of molar heats of absorption of enantiomers into thin chiral coatings by combined IC calorimetric and microgravimetric (QMB) measurements - I. IC calorimetric measurement of heats of absorption [J].
Lerchner, J ;
Kirchner, R ;
Seidel, J ;
Waehlisch, D ;
Wolf, G .
THERMOCHIMICA ACTA, 2004, 415 (1-2) :27-34
[10]   A simple tool for the modeling of heat flow calorimeters [J].
Lerchner, J ;
Wolf, G ;
Auguet, C ;
Torra, V .
THERMOCHIMICA ACTA, 2004, 415 (1-2) :9-13