We partially purified 1-aminocyclopropane-1-carboxylate (ACC) oxidase from senescing petals of carnation (Dianthus caryophyllus L. cv. Nora) flowers and investigated its general characteristics, and, in particular, the inhibition of its activity by ACC analogs. The enzyme had an optimum pH at 7-7.5 and required Fe2+, ascorbate and NaHCO3 for its maximal activity. The K-m for ACC was calculated as 111-125 mu M in the presence of NaHCO3. Its M(r) was estimated to be 35 and 36 kDa by gel-filtration chromatography on HPLC and SDS-PAGE, respectively, indicating that the enzyme exists in a monomeric form, These properties were in agreement with those reported previously with ACC oxidases from different plant tissues including senescing carnation petals. Among six ACC analogs tested, 1-aminocyclobutane-1-carboxylate (ACBC) inhibited most severely the activity of ACC oxidase from carnation petals. ACBC acted as a competitive inhibitor with the K-l of 20-31 mu M. The comparison between the K-m for ACC and the K-i for ACBC indicated that ACBC had an affinity which was ca. 5-fold higher than that of ACC, Whereas ACC inactivated carnation ACC oxidase in a time-dependent manner during incubation, ACBC did not cause the inactivation of the enzyme. Preliminary experiments showed that ACBC and its N-substituted derivatives delayed the onset of senescence in cut carnation flowers.