THRESHOLD BASED SEGMENTATION METHOD FOR HYPERSPECTRAL IMAGES

被引:0
|
作者
Saranathan, Arun M. [1 ]
Parente, Mario [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
来源
2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2013年
关键词
Superpixels; uniformity; unmixing; CRISM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Superpixel algorithms attempt to group contiguous image pixels which are in homogeneous regions into segments(superpixels). For hyperspectral images the pixels contained in a segment must exhibit spectral uniformity, namely they must have similar spectral shapes. Superpixel representation have been used to improve the performance of unmixing algorithms on hyperspectral images. Superpixel algorithms applied to hyperspectral images provide no guarantees on the uniformity inside each segment. The absence of such guarantees requires an over segmentation of the image to maintain spectral variablity. We introduce a graph based agglomerative approach for superpixel segmentation that will provide some basic guarantees on the uniformity inside a segment, which can be used to push the segmentation. We will show that these segmentations with uniformity guarantees can be used to generate mineralogical summaries for images in the Compact Reconnaissance Imaging Spectrometer(CRISM) data-set and the Airborne Visible/Infrared Imaging Spectrometer(AVIRIS) data set.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A feature extraction method based on spectral segmentation and integration of hyperspectral images
    Moghaddam, Sayyed Hamed Alizadeh
    Mokhtarzade, Mehdi
    Beirami, Behnam Asghari
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 89
  • [2] THE THRESHOLD SEGMENTATION METHOD OF SEA SHIPS IMAGES
    Fahmi, Shakeeb S.
    Seliverstov, Svyatoslav A.
    Visloguzov, Victor V.
    Krymskii, Vitalii V.
    MARINE INTELLECTUAL TECHNOLOGIES, 2019, 4 (02): : 69 - 78
  • [3] Transformer-Based Method for Segmentation of Gastric Cancer Microscopic Hyperspectral Images
    Zhang, Ran
    Jin, Wei
    Mu, Ying
    Yu, Bing-wen
    Bai, Yi-wen
    Shao, Yi-bo
    Ping, Jin-liang
    Song, Peng-tao
    He, Xiang-yi
    Liu, Fei
    Fu, Lin-lin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45 (02) : 551 - 557
  • [4] Target volume segmentation of PET images by an iterative method based on threshold value
    Castro, P.
    Huerga, C.
    Glaria, L. A.
    Plaza, R.
    Rodado, S.
    Marin, M. D.
    Manas, A.
    Serrada, A.
    Nunez, L.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2014, 33 (06): : 331 - 339
  • [5] Unsupervised Segmentation of Hyperspectral Images based on Dominant Edges
    Lee, Sangwook
    Lee, Sanghun
    Lee, Chulhee
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS (VISAPP), VOL 1, 2014, : 588 - 592
  • [6] Segmentation of hyperspectral images based on histograms of principal components
    Silverman, J
    Rotman, SR
    Caefer, CE
    IMAGING SPECTROMETRY VIII, 2002, 4816 : 270 - 277
  • [7] Uniformity-Based Superpixel Segmentation of Hyperspectral Images
    Saranathan, Arun M.
    Parente, Mario
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (03): : 1419 - 1430
  • [8] Hyperspectral images segmentation: a proposal
    Goretta, Nathalie
    Roger, Jean-Michel
    Christophe, Fiorio
    Bellon-Maurel, Veronique
    Rabatel, Gilles
    Lelong, Camille
    TRAITEMENT DU SIGNAL, 2009, 26 (02) : 161 - 174
  • [9] Segmentation for Hyperspectral Images with Priors
    Ye, Jian
    Wittman, Todd
    Bresson, Xavier
    Osher, Stanley
    ADVANCES IN VISUAL COMPUTING, PT II, 2010, 6454 : 97 - 106
  • [10] Unsupervised segmentation of hyperspectral images
    Lee, Sangwook
    Lee, Chulhee
    SATELLITE DATA COMPRESSION, COMMUNICATION, AND PROCESSING IV, 2008, 7084