ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A HIGHER-ORDER KDV-TYPE EQUATION WITH CRITICAL NONLINEARITY

被引:3
作者
Okamoto, Mamoru [1 ]
机构
[1] Shinshu Univ, Div Math & Phys, Fac Engn, 4-17-1 Wakasato, Nagano 3808553, Japan
关键词
Higher-order KdV-type equation; asymptotic behavior; critical non-linearity; self-similar solution; LONG-TIME BEHAVIOR; SCHRODINGER-EQUATION; WELL-POSEDNESS; SCATTERING; STABILITY; EXISTENCE; SPACE; MKDV;
D O I
10.3934/eect.2019027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the higher-order KdV-type equation: partial derivative(t)u + 1/m vertical bar partial derivative(x)vertical bar(m-1)partial derivative(x)u = partial derivative(x)(u(m)) where m >= 4. The nonlinearity is critical in the sense of long-time behavior. Using the method of testing by wave packets, we prove that there exists a unique global solution of the Cauchy problem satisfying the same time decay estimate as that of linear solutions. Moreover, we divide the long-time behavior of the solution into three distinct regions.
引用
收藏
页码:567 / 601
页数:35
相关论文
共 28 条
[1]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[2]  
Dodson B., 2017, ANN PDE, V3, P5
[3]   Asymptotic stability of solitons for mKdV [J].
Germain, Pierre ;
Pusateri, Fabio ;
Rousset, Frederic .
ADVANCES IN MATHEMATICS, 2016, 299 :272-330
[4]   On the hierarchies of higher order mKdV and KdV equations [J].
Gruenrock, Axel .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03) :500-536
[5]   The Lifespan of Small Data Solutions to the KP-I [J].
Harrop-Griffiths, Benjamin ;
Ifrim, Mihaela ;
Tataru, Daniel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (01) :1-28
[6]   Long time behavior of solutions to the mKdV [J].
Harrop-Griffiths, Benjamin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (02) :282-317
[7]  
Hayashi N, 1999, INT MATH RES NOTICES, V1999, P395
[8]   Large time asymptotics of solutions to the generalized Korteweg-de Vries equation [J].
Hayashi, N ;
Naumkin, PI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (01) :110-136
[9]  
Hayashi N., 2016, SUT J. Math, V52, P49, DOI DOI 10.55937/SUT/1469055608
[10]   Factorization technique for the fourth-order nonlinear Schrodinger equation [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05) :2343-2377