Three-step Iterations for Total Asymptotically Nonexpansive Mappings in CAT(0) Spaces

被引:7
作者
Saluja, Gurucharan S. [1 ]
Postolache, Mihai [2 ]
机构
[1] Govt Nagarjuna PG Coll Sci, Dept Math, Raipur 492010, Madhya Pradesh, India
[2] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
关键词
Total asymptotically nonexpansive mapping; Delta-convergence; strong convergence; modified three-step iteration process; fixed point; CAT(0) space; DELTA-CONVERGENCE THEOREMS; APPROXIMATING FIXED-POINTS; FAMILY;
D O I
10.2298/FIL1705317S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish strong and Delta-convergence theorems of modified three-step iterations for total asymptotically nonexpansive mapping which is wider than the class asymptotically nonexpansive mappings in the framework of CAT(0) spaces. Our results extend and generalize the corresponding results of Chang et al. [Demiclosed principle and Delta-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces, Appl. Math. Comput. 219(5) (2012) 2611-2617], Nanjaras and Panyanak [Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. Vol. 2010, Art. ID 268780], and many others.
引用
收藏
页码:1317 / 1330
页数:14
相关论文
共 48 条
[11]   On the convergence of the Ishikawa iterates associated with a pair of multi-valued mappings [J].
Ciric, LB ;
Ume, JS .
ACTA MATHEMATICA HUNGARICA, 2003, 98 (1-2) :1-8
[12]  
Ciric Lj.B., 2003, Archivum Mathematicum, V39, P123
[13]   On Mann implicit iterations for strongly accretive and strongly pseudo-contractive mappings [J].
Ciric, Ljubomir ;
Rafiq, Arif ;
Radenovic, Stojan ;
Rajovic, Miloje ;
Ume, Jeong Sheok .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) :128-137
[14]   Implicit Mann fixed point iterations for pseudo-contractive mappings [J].
Ciric, Ljubomir ;
Rafiq, Arif ;
Cakic, Nenad ;
Ume, Jeong Sheok .
APPLIED MATHEMATICS LETTERS, 2009, 22 (04) :581-584
[15]   Modified Ishikawa iteration process for nonlinear Lipschitz generalized strongly pseudo-contractive operators in arbitrary Banach spaces [J].
Ciric, Ljubomir B. ;
Ume, Jeong Sheok ;
Jesic, Sinisa N. ;
Arandjelovic-Milovanovic, Marina M. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (11-12) :1231-1243
[16]  
Dhompongsa S, 2007, J NONLINEAR CONVEX A, V8, P35
[17]   On Δ-convergence theorems in CAT(0) spaces [J].
Dhompongsa, S. ;
Panyanak, B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) :2572-2579
[18]  
GLOWINSKI R, 1989, AUGEMENTED LAGRANGIA
[19]   FIXED-POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS [J].
GOEBEL, K ;
KIRK, WA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 35 (01) :171-&
[20]   Convergence analysis and applications of the Glowinski-Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators [J].
Haubruge, S ;
Nguyen, VH ;
Strodiot, JJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 97 (03) :645-673