Recovering Robustness in Model-Free Reinforcement Learning

被引:12
作者
Venkataraman, Harish K.
Seiler, Peter J.
机构
来源
2019 AMERICAN CONTROL CONFERENCE (ACC) | 2019年
关键词
DESIGN;
D O I
10.23919/acc.2019.8815368
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reinforcement learning (RL) is used to directly design a control policy using data collected from the system. This paper considers the robustness of controllers trained via model-free RL. The discussion focuses on posing the (model-free) linear quadratic Gaussian (LQG) problem as a special instance of RL. A simple LQG example is used to demonstrate that RL with partial observations can lead to poor robustness margins. It is proposed to recover robustness by introducing random perturbations at the system input during the RL training. The perturbation magnitude can be used to trade off performance for increased robustness. Two simple examples are presented to demonstrate the proposed method for enhancing robustness during RL training.
引用
收藏
页码:4210 / 4216
页数:7
相关论文
共 50 条
[31]   Model-Free Deep Reinforcement Learning with Multiple Line-of-Sight Guidance Laws for Autonomous Underwater Vehicles Full-Attitude and Velocity Control [J].
Yuan, Chengren ;
Shuai, Changgeng ;
Zhang, Zhanshuo ;
Ma, Jianguo ;
Fang, Yuan ;
Sun, Yuchen .
ADVANCED INTELLIGENT SYSTEMS, 2025,
[32]   Model-Free Adaptive Iterative Learning From Communicable Agents for Nonlinear Networks Consensus [J].
Sun, Shiyong ;
Chi, Ronghu ;
Liu, Yang ;
Lin, Na .
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 :458-467
[33]   Model-free kinematic control for robotic systems [J].
Salvato, Erica ;
Blanchini, Franco ;
Fenu, Gianfranco ;
Giordano, Giulia ;
Pellegrino, Felice Andrea .
AUTOMATICA, 2025, 173
[34]   Sensor fault accommodation: a model-free framework [J].
Ziane, Meziane Ait ;
Join, Cedric ;
Zasadzinski, Michel .
INTERNATIONAL JOURNAL OF CONTROL, 2025,
[35]   Robust model-free adaptive iterative learning control for an autonomous bus trajectory tracking system [J].
Liu, Shida ;
Huang, Wei ;
Ji, Honghai ;
Wang, Li .
SCIENCE PROGRESS, 2024, 107 (02)
[36]   Robust Model-Free Adaptive Iterative Learning Control for Vibration Suppression Based on Evidential Reasoning [J].
Bai, Liang ;
Feng, Yun-Wen ;
Li, Ning ;
Xue, Xiao-Feng .
MICROMACHINES, 2019, 10 (03)
[37]   Model-free adaptive iterative learning integral terminal sliding mode control of exoskeleton robots [J].
Esmaeili, Babak ;
Madani, Seyedeh Sepideh ;
Salim, Mina ;
Baradarannia, Mahdi ;
Khanmohammadi, Sohrab .
JOURNAL OF VIBRATION AND CONTROL, 2022, 28 (21-22) :3120-3139
[38]   Model-Free Q-Learning-Based Adaptive Optimal Control for Wheeled Mobile Robot [J].
Duc, Cuong Nguyen ;
Pham, Sen Huong Thi ;
Vu, Nga Thi-Thuy .
JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2025, 36 (01) :86-100
[39]   A Hybrid Model and Model-Free Position Control for a Reconfigurable Manipulator [J].
Li, Gaofeng ;
Song, Dezhen ;
Xu, Shan ;
Sun, Lei ;
Liu, Jingtai .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2019, 24 (02) :785-795
[40]   Observer-Based Model-Free Iterative Learning for Fault-Tolerant Control of Nonlinear Systems [J].
Wang, Rongrong ;
Chi, Ronghu .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2025,