Metric and isoperimetric problems in symplectic geometry

被引:61
作者
Viterbo, C [1 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
symplectic geometry; Lagrangian submanifolds; minimal submanifolds; isoperimetric problems; billiards;
D O I
10.1090/S0894-0347-00-00328-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:411 / 431
页数:21
相关论文
共 28 条
[1]  
BENCI V, 1989, ANN I H POINCARE-AN, V6, P73
[3]  
Caffarelli L. A., 1995, AM MATH SOC C PUBLIC, V43
[4]   Lagrangian intersections, symplectic energy and areas of holomorphic curves [J].
Chekanov, YV .
DUKE MATHEMATICAL JOURNAL, 1998, 95 (01) :213-226
[5]  
Chen B.-Y., 1980, GEOMETRY SUBMANIFOLD
[6]  
CROKE CB, 1988, J DIFFER GEOM, V27, P1
[7]   SYMPLECTIC TOPOLOGY AND HAMILTONIAN-DYNAMICS [J].
EKELAND, I ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 200 (03) :355-378
[8]   SYMPLECTIC TOPOLOGY AND HAMILTONIAN-DYNAMICS .2. [J].
EKELAND, I ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1990, 203 (04) :553-567
[9]  
FERRAND E, 1997, THESIS ECOLE POLYTEC
[10]   PSEUDO HOLOMORPHIC-CURVES IN SYMPLECTIC-MANIFOLDS [J].
GROMOV, M .
INVENTIONES MATHEMATICAE, 1985, 82 (02) :307-347