Concentration behavior of the penalized least squares estimator

被引:2
作者
Muro, Alan [1 ]
van de Geer, Sara [1 ]
机构
[1] Swiss Fed Inst Technol, Seminar Stat, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
concentration inequalities; regularized least squares; statistical trade-off; REGRESSION; MINIMIZATION; CONVERGENCE; MINIMAX; RATES;
D O I
10.1111/stan.12123
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the standard nonparametric regression model and take as estimator the penalized least squares function. In this article, we study the trade-off between closeness to the true function and complexity penalization of the estimator, where complexity is described by a seminorm on a class of functions. First, we present an exponential concentration inequality revealing the concentration behavior of the trade-off of the penalized least squares estimator around a nonrandom quantity, where such quantity depends on the problem under consideration. Then, under some conditions and for the proper choice of the tuning parameter, we obtain bounds for this nonrandom quantity. We illustrate our results with some examples that include the smoothing splines estimator.
引用
收藏
页码:109 / 125
页数:17
相关论文
共 22 条
  • [1] [Anonymous], 2013, Concentration Inequali-ties: A Nonasymptotic Theory of Independence, DOI DOI 10.1093/ACPROF:OSO/9780199535255.001.0001
  • [2] Empirical minimization
    Bartlett, PL
    Mendelson, S
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (03) : 311 - 334
  • [3] BELLEC P., 2017, Springer Proc. Math. Stat., V208, P315, DOI 10.1007/978-3-319-65313-6_13
  • [4] Maxiset in sup-norm for kernel estimators
    Bertin, Karine
    Rivoirard, Vincent
    [J]. TEST, 2009, 18 (03) : 475 - 496
  • [5] Birman M. S., 1967, Sbornik: Mathematics, V2, P295, DOI 10.1070/SM1967v002n03ABEH002343
  • [6] A NEW PERSPECTIVE ON LEAST SQUARES UNDER CONVEX CONSTRAINT
    Chatterjee, Sourav
    [J]. ANNALS OF STATISTICS, 2014, 42 (06) : 2340 - 2381
  • [7] delsBarrio E., 2007, EMS SERIES LECT MATH
  • [8] Green P. J., 1993, CHAPMAN HALL CRC MON
  • [9] Gu C., 2002, IMA volumes in mathematics and its applications
  • [10] Kerkyacharian G, 2002, BERNOULLI, V8, P219