r-Strong edge colorings of graphs

被引:104
作者
Akbari, S. [1 ]
Bidkhori, H.
Nosrati, N.
机构
[1] Inst Studies Theoret Phys & Math, Tehran, Iran
[2] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
关键词
coloring; strong edge coloring; tree;
D O I
10.1016/j.disc.2004.12.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and for any natural number r, chi '(s) (G, r) denotes the minimum number of colors required for a proper edge coloring of G in which no two vertices with distance at most r are incident to edges colored with the same set of colors. In [Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626] it has been proved that for any tree T with at least three vertices, chi '(s) (T, 1) <=Delta(T) + 1. Here we generalize this result and show that chi '(s)(T, 2) <=Delta(T) + 1. Moreover, we show that if for any two vertices u and v with maximum degree d(u, v) >= 3, then chi '(s) (T, 2) = Delta(T). Also for any tree T with J (T) >= 3 we,s prove that chi '(s) (T, 3) <= 2 Delta(T) - 1. Finally, it is shown that for any graph G with no isolated edges, chi '(s) (G, 1) <= 3 Delta(G). (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3005 / 3010
页数:6
相关论文
共 8 条
[1]  
[Anonymous], DISCUSS MATH GRAPH T
[2]  
BALISTER PN, ADJACENT VERTEX DIST
[3]   On the vertex-distinguishing proper edge-colorings of graphs [J].
Bazgan, C ;
Harkat-Benhamdine, A ;
Li, H ;
Wozniak, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) :288-301
[4]  
FAUDREE RJ, 1990, ARS COMBINATORIA, V29B, P205
[5]   INDUCED MATCHINGS IN BIPARTITE GRAPHS [J].
FAUDREE, RJ ;
GYARFAS, A ;
SCHELP, RH ;
TUZA, Z .
DISCRETE MATHEMATICS, 1989, 78 (1-2) :83-87
[6]   Strong edge colorings of graphs [J].
Favaron, O ;
Li, H ;
Schelp, RH .
DISCRETE MATHEMATICS, 1996, 159 (1-3) :103-109
[7]  
van Lint J., 1992, A Course in Combinatorics
[8]   Adjacent strong edge coloring of graphs [J].
Zhang, ZF ;
Liu, LZ ;
Wang, JF .
APPLIED MATHEMATICS LETTERS, 2002, 15 (05) :623-626