Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds

被引:451
作者
Bernal, Paulina Nunez [1 ]
Delrot, Paul [2 ]
Loterie, Damien [2 ]
Li, Yang [1 ]
Malda, Jos [1 ,3 ]
Moser, Christophe [2 ]
Levato, Riccardo [1 ,3 ]
机构
[1] Univ Utrecht, Dept Orthopaed, Univ Med Ctr Utrecht, NL-3584 CX Utrecht, Netherlands
[2] Ecole Polytech Fed Lausanne, Lab Appl Photon Devices, CH-1015 Lausanne, Switzerland
[3] Univ Utrecht, Dept Equine Sci, Fac Vet Med, NL-3584 CX Utrecht, Netherlands
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
biofabrication; bioinks; bioresins; cell encapsulation; photopolymers; tomographic laser prototyping; HYDROGELS; DESIGN;
D O I
10.1002/adma.201904209
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biofabrication technologies, including stereolithography and extrusion-based printing, are revolutionizing the creation of complex engineered tissues. The current paradigm in bioprinting relies on the additive layer-by-layer deposition and assembly of repetitive building blocks, typically cell-laden hydrogel fibers or voxels, single cells, or cellular aggregates. The scalability of these additive manufacturing technologies is limited by their printing velocity, as lengthy biofabrication processes impair cell functionality. Overcoming such limitations, the volumetric bioprinting of clinically relevant sized, anatomically shaped constructs, in a time frame ranging from seconds to tens of seconds is described. An optical-tomography-inspired printing approach, based on visible light projection, is developed to generate cell-laden tissue constructs with high viability (>85%) from gelatin-based photoresponsive hydrogels. Free-form architectures, difficult to reproduce with conventional printing, are obtained, including anatomically correct trabecular bone models with embedded angiogenic sprouts and meniscal grafts. The latter undergoes maturation in vitro as the bioprinted chondroprogenitor cells synthesize neo-fibrocartilage matrix. Moreover, free-floating structures are generated, as demonstrated by printing functional hydrogel-based ball-and-cage fluidic valves. Volumetric bioprinting permits the creation of geometrically complex, centimeter-scale constructs at an unprecedented printing velocity, opening new avenues for upscaling the production of hydrogel-based constructs and for their application in tissue engineering, regenerative medicine, and soft robotics.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Design characteristics for the tissue engineering of cartilaginous tissues [J].
Almarza, AJ ;
Athanasiou, KA .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (01) :2-17
[2]   A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus [J].
Bahcecioglu, Gokhan ;
Hasirci, Nesrin ;
Bilgen, Bahar ;
Hasirci, Vasif .
BIOFABRICATION, 2019, 11 (02)
[3]   Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems [J].
Bartnikowski, M. ;
Bartnikowski, N. J. ;
Woodruff, M. A. ;
Schrobback, K. ;
Klein, T. J. .
ACTA BIOMATERIALIA, 2015, 27 :66-76
[4]   Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies [J].
Bertlein, Sarah ;
Brown, Gabriella ;
Lim, Khoon S. ;
Jungst, Tomasz ;
Boeck, Thomas ;
Blunk, Torsten ;
Tessmar, Joerg ;
Hooper, Gary J. ;
Woodfield, Tim B. F. ;
Groll, Juergen .
ADVANCED MATERIALS, 2017, 29 (44)
[5]   Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity [J].
Blaeser, Andreas ;
Campos, Daniela Filipa Duarte ;
Puster, Uta ;
Richtering, Walter ;
Stevens, Molly M. ;
Fischer, Horst .
ADVANCED HEALTHCARE MATERIALS, 2016, 5 (03) :326-333
[6]   Engineering Stem Cell Self-organization to Build Better Organoids [J].
Brassard, Jonathan A. ;
Lutolf, Matthias P. .
CELL STEM CELL, 2019, 24 (06) :860-876
[7]   Bioprinting of a functional vascularized mouse thyroid gland construct [J].
Bulanova, Elena A. ;
Koudan, Elizaveta V. ;
Degosserie, Jonathan ;
Heymans, Charlotte ;
Pereira, Frederico D. A. S. ;
Parfenov, Vladislav A. ;
Sun, Yi ;
Wang, Qi ;
Akhmedova, Suraya A. ;
Sviridova, Irina K. ;
Sergeeva, Natalia S. ;
Frank, Georgy A. ;
Khesuani, Yusef D. ;
Pierreux, Christophe E. ;
Mironov, Vladimir A. .
BIOFABRICATION, 2017, 9 (03)
[8]   Identification of the Human Skeletal Stem Cell [J].
Chan, Charles K. F. ;
Gulati, Gunsagar S. ;
Sinha, Rahul ;
Tompkins, Justin Vincent ;
Lopez, Michael ;
Carter, Ava C. ;
Ransom, Ryan C. ;
Reinisch, Andreas ;
Wearda, Taylor ;
Murphy, Matthew ;
Brewer, Rachel E. ;
Koepke, Lauren S. ;
Marecic, Owen ;
Manjunath, Anoop ;
Seo, Eun Young ;
Leavitt, Tripp ;
Lu, Wan-Jin ;
Allison Nguyen ;
Conley, Stephanie D. ;
Salhotra, Ankit ;
Ambrosi, Thomas H. ;
Borrelli, Mimi R. ;
Siebel, Taylor ;
Chan, Karen ;
Schallmoser, Katharina ;
Seita, Jun ;
Sahoo, Debashis ;
Goodnough, Henry ;
Bishop, Julius ;
Gardner, Michael ;
Majeti, Ravindra ;
Wan, Derrick C. ;
Goodman, Stuart ;
Weissman, Irving L. ;
Chang, Howard Y. ;
Longaker, Michael T. .
CELL, 2018, 175 (01) :43-+
[9]   Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation [J].
Chan, Vincent ;
Zorlutuna, Pinar ;
Jeong, Jae Hyun ;
Kong, Hyunjoon ;
Bashir, Rashid .
LAB ON A CHIP, 2010, 10 (16) :2062-2070
[10]   Organ sculpting by patterned extracellular matrix stiffness [J].
Crest, Justin ;
Diz-Munoz, Alba ;
Chen, Dong-Yuan ;
Fletcher, Daniel A. ;
Bilder, David .
ELIFE, 2017, 6