Metabolome of human gut microbiome is predictive of host dysbiosis

被引:74
|
作者
Larsen, Peter E. [1 ,2 ]
Dai, Yang [1 ]
机构
[1] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
[2] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA
来源
GIGASCIENCE | 2015年 / 4卷
关键词
Dysbiosis; Gut microbiome; Human microbiome; Machine learning; Metabolome modeling; Metagenomics; Microbial communities; DISEASE; METAGENOMICS; ASSOCIATIONS; INFLAMMATION; MODULATION; DYNAMICS; OBESITY; BRAIN;
D O I
10.1186/s13742-015-0084-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome
    Maier, Tanja V.
    Lucio, Marianna
    Lee, Lang Ho
    VerBerkmoes, Nathan C.
    Brislawn, Colin J.
    Bernhardt, Joerg
    Lamendella, Regina
    McDermott, Jason E.
    Bergeron, Nathalie
    Heinzmann, Silke S.
    Morton, James T.
    Gonzalez, Antonio
    Ackermann, Gail
    Knight, Rob
    Riedel, Katharina
    Krauss, Ronald M.
    Schmitt-Kopplin, Philippe
    Jansson, Janet K.
    MBIO, 2017, 8 (05):
  • [32] Role of dietary fiber in the recovery of the human gut microbiome and its metabolome
    Tanes, Ceylan
    Bittinger, Kyle
    Gao, Yuan
    Friedman, Elliot S.
    Nessel, Lisa
    Paladhi, Unmesha Roy
    Chau, Lillian
    Panfen, Erika
    Fischbach, Michael A.
    Braun, Jonathan
    Xavier, Ramnik J.
    Clish, Clary B.
    Li, Hongzhe
    Bushman, Frederic D.
    Lewis, James D.
    Wu, Gary D.
    CELL HOST & MICROBE, 2021, 29 (03) : 394 - +
  • [33] Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome
    Antoine M. Snijders
    Sasha A. Langley
    Young-Mo Kim
    Colin J. Brislawn
    Cecilia Noecker
    Erika M. Zink
    Sarah J. Fansler
    Cameron P. Casey
    Darla R. Miller
    Yurong Huang
    Gary H. Karpen
    Susan E. Celniker
    James B. Brown
    Elhanan Borenstein
    Janet K. Jansson
    Thomas O. Metz
    Jian-Hua Mao
    Nature Microbiology, 2
  • [34] Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome
    Snijders, Antoine M.
    Langley, Sasha A.
    Kim, Young-Mo
    Brislawn, Colin J.
    Noecker, Cecilia
    Zink, Erika M.
    Fansler, Sarah J.
    Casey, Cameron P.
    Miller, Darla R.
    Huang, Yurong
    Karpen, Gary H.
    Celniker, Susan E.
    Brown, James B.
    Borenstein, Elhanan
    Jansson, Janet K.
    Metz, Thomas O.
    Mao, Jian-Hua
    NATURE MICROBIOLOGY, 2017, 2 (02):
  • [35] Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe
    Lamichhane, Santosh
    Sen, Partho
    Dickens, Alex M.
    Oregic, Matej
    Bertram, Hanne Christine
    METHODS, 2018, 149 : 3 - 12
  • [36] Network of Interactions Between Gut Microbiome, Host Biomarkers, and Urine Metabolome in Carotid Atherosclerosis
    Li, Rui-Jun
    Jie, Zhu-Ye
    Feng, Qiang
    Fang, Rui-Ling
    Li, Fei
    Gao, Yuan
    Xia, Hui-Hua
    Zhong, Huan-Zi
    Tong, Bin
    Madsen, Lise
    Zhang, Jia-Hao
    Liu, Chun-Lei
    Xu, Zhen-Guo
    Wang, Jian
    Yang, Huan-Ming
    Xu, Xun
    Hou, Yong
    Brix, Susanne
    Kristiansen, Karsten
    Yu, Xin-Lei
    Jia, Hui-Jue
    He, Kun-Lun
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2021, 11
  • [37] Integrated Analyses of Gut Microbiome and Host Metabolome in Children With Henoch-Schonlein Purpura
    Wen, Min
    Dang, Xiqiang
    Feng, Shipin
    He, Qingnan
    Li, Xiaoyan
    Liu, Taohua
    He, Xiaojie
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 11
  • [38] Host–microbiome orchestration of the sulfated metabolome
    Gabriel D. D’Agostino
    Snehal N. Chaudhari
    A. Sloan Devlin
    Nature Chemical Biology, 2024, 20 : 410 - 421
  • [39] Interplay between the human gut microbiome and host metabolism
    Alessia Visconti
    Caroline I. Le Roy
    Fabio Rosa
    Niccolò Rossi
    Tiphaine C. Martin
    Robert P. Mohney
    Weizhong Li
    Emanuele de Rinaldis
    Jordana T. Bell
    J. Craig Venter
    Karen E. Nelson
    Tim D. Spector
    Mario Falchi
    Nature Communications, 10
  • [40] Coevolution of the Human Host and Gut Microbiome: Metagenomics of Microbiota
    Shahab, Maryam
    Shahab, Nimra
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (06)