BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors

被引:454
作者
Lee, Andrew [1 ]
Mavaddat, Nasim [1 ]
Wilcox, Amber N. [2 ]
Cunningham, Alex P. [1 ]
Carver, Tim [1 ]
Hartley, Simon [1 ]
de Villiers, Chantal Babb [3 ]
Izquierdo, Angel [4 ,5 ]
Simard, Jacques [6 ]
Schmidt, Marjanka K. [7 ]
Walter, Fiona M. [3 ]
Chatterjee, Nilanjan [8 ,9 ]
Garcia-Closas, Montserrat [2 ]
Tischkowitz, Marc [10 ,11 ]
Pharoah, Paul [1 ,12 ]
Easton, Douglas F. [1 ,12 ]
Antoniou, Antonis C. [1 ]
机构
[1] Univ Cambridge, Ctr Canc Genet Epidemiol, Dept Publ Hlth & Primary Care, Strangeways Res Lab, Cambridge, England
[2] NCI, Div Canc Epidemiol & Genet, NIH, Rockville, MD USA
[3] Univ Cambridge, Dept Publ Hlth & Primary Care, Primary Care Unit, Cambridge, England
[4] Girona Biomed Res Inst IdiBGi, Catalan Inst Oncol, Epidemiol Unit, Hereditary Canc Program, Girona, Spain
[5] Girona Biomed Res Inst IdiBGi, Catalan Inst Oncol, Girona Canc Registry, Girona, Spain
[6] Univ Laval, Res Ctr, Ctr Hosp Univ Quebec, Quebec City, PQ, Canada
[7] Netherlands Canc Inst, Div Mol Pathol, Amsterdam, Netherlands
[8] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[9] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD 21205 USA
[10] Univ Cambridge, Dept Med Genet, Cambridge, England
[11] Univ Cambridge, Natl Inst Hlth Res, Cambridge Biomed Res Ctr, Cambridge, England
[12] Univ Cambridge, Dept Oncol, Ctr Canc Genet Epidemiol, Cambridge, England
基金
英国惠康基金; 欧洲研究理事会; 加拿大健康研究院;
关键词
breast cancer; risk prediction; BOADICEA; rare variants; PRS; TRUNCATING VARIANTS; WOMEN; SUSCEPTIBILITY; OVARIAN; MUTATION; BRCA2; PALB2; MODIFIERS; MENOPAUSE; CHEK2;
D O I
10.1038/s41436-018-0406-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Purpose: Breast cancer (BC) risk prediction allows systematic identification of individuals at highest and lowest risk. We extend the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) risk model to incorporate the effects of polygenic risk scores (PRS) and other risk factors (RFs). Methods: BOADICEA incorporates the effects of truncating variants in BRCA1, BRCA2, PALB2, CHEK2, and ATM; a PRS based on 313 single-nucleotide polymorphisms (SNPs) explaining 20% of BC polygenic variance; a residual polygenic component accounting for other genetic/familial effects; known lifestyle/hormonal/reproductive RFs; and mammographic density, while allowing for missing information. Results: Among all factors considered, the predicted UK BC risk distribution is widest for the PRS, followed by mammographic density. The highest BC risk stratification is achieved when all genetic and lifestyle/hormonal/reproductive/anthropomorphic factors are considered jointly. With all factors, the predicted lifetime risks for women in the UK population vary from 2.8% for the 1st percentile to 30.6% for the 99th percentile, with 14.7% of women predicted to have a lifetime risk of >= 17-<30% (moderate risk according to National Institute for Health and Care Excellence [NICE] guidelines) and 1.1% a lifetime risk of >= 30% (high risk). Conclusion: This comprehensive model should enable high levels of BC risk stratification in the general population and women with family history, and facilitate individualized, informed decision-making on prevention therapies and screening.
引用
收藏
页码:1708 / 1718
页数:11
相关论文
共 40 条
[1]   Breast cancer risk by age at birth, time since birth and time intervals between births:: exploring interaction effects [J].
Albrektsen, G ;
Heuch, I ;
Hansen, S ;
Kvåle, G .
BRITISH JOURNAL OF CANCER, 2005, 92 (01) :167-175
[2]   The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions [J].
Antoniou, A. C. ;
Cunningham, A. P. ;
Peto, J. ;
Evans, D. G. ;
Lalloo, F. ;
Narod, S. A. ;
Risch, H. A. ;
Eyfjord, J. E. ;
Hopper, J. L. ;
Southey, M. C. ;
Olsson, H. ;
Johannsson, O. ;
Borg, A. ;
Passini, B. ;
Radice, P. ;
Manoukian, S. ;
Eccles, D. M. ;
Tang, N. ;
Olah, E. ;
Anton-Culver, H. ;
Warner, E. ;
Lubinski, J. ;
Gronwald, J. ;
Gorski, B. ;
Tryggvadottir, L. ;
Syrjakoski, K. ;
Kallioniemi, O-P ;
Eerola, H. ;
Nevanlinna, H. ;
Pharoah, P. D. P. ;
Easton, D. F. .
BRITISH JOURNAL OF CANCER, 2008, 98 (08) :1457-1466
[3]  
Antoniou AC, 2014, NEW ENGL J MED, V371, P497, DOI [10.1056/NEJMoa1400382, 10.1056/NEJMc1410673, 10.1056/NEJMc1410673#SA1]
[4]   The BOADICEA model of genetic susceptibility to breast and ovarian cancer [J].
Antoniou, AC ;
Pharoah, PPD ;
Smith, P ;
Easton, DF .
BRITISH JOURNAL OF CANCER, 2004, 91 (08) :1580-1590
[5]   Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study [J].
Antoniou, AC ;
Pharoah, PDP ;
McMullan, G ;
Day, NE ;
Ponder, BAJ ;
Easton, D .
GENETIC EPIDEMIOLOGY, 2001, 21 (01) :1-18
[6]   Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies [J].
Beral, V. ;
Bull, D. ;
Pirie, K. ;
Reeves, G. ;
Peto, R. ;
Skegg, D. ;
LaVecchia, C. ;
Magnusson, C. ;
Pike, M. C. ;
Thomas, D. ;
Hamajima, N. ;
Hirose, K. ;
Tajima, K. ;
Rohan, T. ;
Friedenreich, C. M. ;
Calle, E. E. ;
Gapstur, S. M. ;
Patel, A. V. ;
Coates, R. J. ;
Liff, J. M. ;
Talamini, R. ;
Chantarakul, N. ;
Koetsawang, S. ;
Rachawat, D. ;
Marcou, Y. ;
Kakouri, E. ;
Duffy, S. W. ;
Morabia, A. ;
Schuman, L. ;
Stewart, W. ;
Szklo, M. ;
Coogan, P. F. ;
Palmer, J. R. ;
Rosenberg, L. ;
Band, P. ;
Coldman, A. J. ;
Gallagher, R. P. ;
Hislop, T. G. ;
Yang, P. ;
Cummings, S. R. ;
Canfell, K. ;
Sitas, F. ;
Chao, P. ;
Lissowska, J. ;
Horn-Ross, P. L. ;
John, E. M. ;
Kolonel, L. M. ;
Nomura, A. M. Y. ;
Ghiasvand, R. ;
Hu, J. .
LANCET ONCOLOGY, 2012, 13 (11) :1141-1151
[7]   Alcohol, tobacco and breast cancer -: collaborative reanalysis of individual data from 53 epidemiological studies, including 58515 women with breast cancer and 95067 women without the disease [J].
Beral, V ;
Hamajima, N ;
Hirose, K ;
Rohan, T ;
Calle, EE ;
Heath, CW ;
Coates, RJ ;
Liff, JM ;
Talamini, R ;
Chantarakul, N ;
Koetsawang, S ;
Rachawat, D ;
Morabia, A ;
Schuman, L ;
Stewart, W ;
Szklo, M ;
Bain, C ;
Schofield, F ;
Siskind, V ;
Band, P ;
Coldman, AJ ;
Gallagher, RP ;
Hislop, TG ;
Yang, P ;
Kolonel, LM ;
Nomura, AMY ;
Hu, J ;
Johnson, KC ;
Mao, Y ;
De Sanjose, S ;
Lee, N ;
Marchbanks, P ;
Ory, HW ;
Peterson, HB ;
Wilson, HG ;
Wingo, PA ;
Ebeling, K ;
Kunde, D ;
Nishan, P ;
Hopper, JL ;
Colditz, G ;
Gajalakshmi, V ;
Martin, N ;
Pardthaisong, T ;
Solpisornkosol, S ;
Theetranont, C ;
Boosiri, B ;
Chutivongse, S ;
Jimakorn, P ;
Virutamasen, P .
BRITISH JOURNAL OF CANCER, 2002, 87 (11) :1234-1245
[8]   Breast Cancer Risk in Relation to the Interval Between Menopause and Starting Hormone Therapy [J].
Beral, Valerie ;
Reeves, Gillian ;
Bull, Diana ;
Green, Jane .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2011, 103 (04) :296-305
[9]   pedigreejs']js: a web-based graphical pedigree editor [J].
Carver, Tim ;
Cunningham, Alex P. ;
de Villiers, Chantal Babb ;
Lee, Andrew ;
Hartley, Simon ;
Tischkowitz, Marc ;
Walter, Fiona M. ;
Easton, Douglas F. ;
Antoniou, Antonis C. .
BIOINFORMATICS, 2018, 34 (06) :1069-1071
[10]   Developing and evaluating polygenic risk prediction models for stratified disease prevention [J].
Chatterjee, Nilanjan ;
Shi, Jianxin ;
Garcia-Closas, Montserrat .
NATURE REVIEWS GENETICS, 2016, 17 (07) :392-406