Multi-organ Segmentation Based on 2.5D Semi-supervised Learning

被引:1
作者
Chen, Hao [1 ]
Zhang, Wen [1 ]
Yan, Xiaochao [1 ]
Chen, Yanbin [1 ]
Chen, Xin [1 ]
Wu, Mengjun [1 ]
Pan, Lin [1 ]
Zheng, Shaohua [1 ]
机构
[1] Fuzhou Univ, Intelligent Image Proc & Anal Lab, Fuzhou 350108, Fujian, Peoples R China
来源
FAST AND LOW-RESOURCE SEMI-SUPERVISED ABDOMINAL ORGAN SEGMENTATION, FLARE 2022 | 2022年 / 13816卷
关键词
Semi-supervised; Deep learning; Organ segmentation;
D O I
10.1007/978-3-031-23911-3_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic segmentation of multiple organs is a challenging topic. Most existing approaches are based on 2D network or 3D network, which leads to insufficient contextual exploration in organ segmentation. In recent years, many methods for automatic segmentation based on fully supervised deep learning have been proposed. However, it is very expensive and time-consuming for experienced medical practitioners to annotate a large number of pixels. In this paper, we propose a new twodimensional multi slices semi-supervised method to perform the task of abdominal organ segmentation. The network adopts the information along the z-axis direction in CT images, preserves and exploits the useful temporal information in adjacent slices. Besides, we combine CrossEntropy Loss and Dice Loss as loss functions to improve the performance of our method. We apply a teacher-student model with Exponential Moving Average (EMA) strategy to leverage the unlabeled data. The student model is trained with labeled data, and the teacher model is obtained by smoothing the student model weights via EMA. The pseudo-labels of unlabeled images predicted by the teacher model are used to train the student model as the final model. The mean DSC for all cases we obtained on the validation set was 0.5684, the mean NSD was 0.5971, and the total run time was 783.14 s.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 14 条
[1]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[2]   A tutorial on the cross-entropy method [J].
De Boer, PT ;
Kroese, DP ;
Mannor, S ;
Rubinstein, RY .
ANNALS OF OPERATIONS RESEARCH, 2005, 134 (01) :19-67
[3]   The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge [J].
Heller, Nicholas ;
Isensee, Fabian ;
Maier-Hein, Klaus H. ;
Hou, Xiaoshuai ;
Xie, Chunmei ;
Li, Fengyi ;
Nan, Yang ;
Mu, Guangrui ;
Lin, Zhiyong ;
Han, Miofei ;
Yao, Guang ;
Gao, Yaozong ;
Zhang, Yao ;
Wang, Yixin ;
Hou, Feng ;
Yang, Jiawei ;
Xiong, Guangwei ;
Tian, Jiang ;
Zhong, Cheng ;
Ma, Jun ;
Rickman, Jack ;
Dean, Joshua ;
Stai, Bethany ;
Tejpaul, Resha ;
Oestreich, Makinna ;
Blake, Paul ;
Kaluzniak, Heather ;
Raza, Shaneabbas ;
Rosenberg, Joel ;
Moore, Keenan ;
Walczak, Edward ;
Rengel, Zachary ;
Edgerton, Zach ;
Vasdev, Ranveer ;
Peterson, Matthew ;
McSweeney, Sean ;
Peterson, Sarah ;
Kalapara, Arveen ;
Sathianathen, Niranjan ;
Papanikolopoulos, Nikolaos ;
Weight, Christopher .
MEDICAL IMAGE ANALYSIS, 2021, 67
[4]  
Heller N, 2020, J CLIN ONCOL, V38
[5]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[6]  
Simpson AL, 2019, Arxiv, DOI [arXiv:1902.09063, 10.48550/arXiv.1902.09063, DOI 10.48550/ARXIV.1902.09063]
[7]   Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation [J].
Li, Xiaomeng ;
Yu, Lequan ;
Chen, Hao ;
Fu, Chi-Wing ;
Xing, Lei ;
Heng, Pheng-Ann .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (02) :523-534
[8]   2.5D lightweight RIU-Net for automatic liver and tumor segmentation from CT [J].
Lv, Peiqing ;
Wang, Jinke ;
Wang, Haiying .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
[9]   Fast and Low-GPU-memory abdomen CT organ segmentation: The FLARE challenge [J].
Ma, Jun ;
Zhang, Yao ;
Gu, Song ;
An, Xingle ;
Wang, Zhihe ;
Ge, Cheng ;
Wang, Congcong ;
Zhang, Fan ;
Wang, Yu ;
Xu, Yinan ;
Gou, Shuiping ;
Thaler, Franz ;
Payer, Christian ;
Stern, Darko ;
Henderson, Edward G. A. ;
McSweeney, Donal M. ;
Green, Andrew ;
Jackson, Price ;
McIntosh, Lachlan ;
Nguyen, Quoc-Cuong ;
Qayyum, Abdul ;
Conze, Pierre-Henri ;
Huang, Ziyan ;
Zhou, Ziqi ;
Fan, Deng-Ping ;
Xiong, Huan ;
Dong, Guoqiang ;
Zhu, Qiongjie ;
He, Jian ;
Yang, Xiaoping .
MEDICAL IMAGE ANALYSIS, 2022, 82
[10]   AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem? [J].
Ma, Jun ;
Zhang, Yao ;
Gu, Song ;
Zhu, Cheng ;
Ge, Cheng ;
Zhang, Yichi ;
An, Xingle ;
Wang, Congcong ;
Wang, Qiyuan ;
Liu, Xin ;
Cao, Shucheng ;
Zhang, Qi ;
Liu, Shangqing ;
Wang, Yunpeng ;
Li, Yuhui ;
He, Jian ;
Yang, Xiaoping .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) :6695-6714