Dependence of Precursors on Solution-Processed SnO2 as Electron Transport Layers for CsPbBr3 Perovskite Solar Cells

被引:8
作者
Liu, Zhuang [1 ]
Chen, Jianlin [1 ]
Huang, Caiyou [1 ]
Kiprono, Too Gideon [1 ]
Zhao, Wusong [1 ]
Qiu, Wei [1 ]
Peng, Zhuoyin [1 ]
Chen, Jian [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Energy & Power Engn, Educ Dept Hunan Prov, Key Lab Efficient & Clean Energy Utilizat, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
All-inorganic perovskite solar cells; CsPbBr3; SnO2; electron transport layer; TIN OXIDE; STABILITY; ENHANCEMENT; FILMS;
D O I
10.1142/S1793292020501611
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, three kinds of SnO2 precursors were comparatively investigated for low temperature solution-processed SnO2 films as electron transport layers (ETL) of CsPbBr3 perovskite solar cells (PSCs). It was found that the precursor state and solvent type played an important role on the crystallinity and film-forming performance of SnO2. All-inorganic hole-transport-layerfree planar CsPbBr3 PSCs with an architecture of FTO/SnO2/CsPbBr3/carbon were fabricated. The best-performing device with SnO2 as ETL by reflux condensation sol spin- coating technique delivered a champion power conversion efficiency (PCE) as high as 6.27%, with a short-circuit current density of 7.36mAcm-2, an open-circuit voltage of 1.29V, and a fill factor of 65.9%. It was comparable to the highest PCE record 6.7% of the device with the same structure based on TiO2-ETL so far. Moreover, the CsPbBr3 devices without encapsulation exhibited good stability after being stored under ambient conditions with a relative humidity of similar to 40% at room temperature over 1000 h and 60.C for 720 h, respectively. The results promise the commercial potential of CsPbBr3 PSCs using reflux condensation low-temperature solution-processed SnO2 as ETLs for flexible polymer photovoltaic applications.
引用
收藏
页数:14
相关论文
共 57 条
[1]   Planar perovskite solar cells with long-term stability using ionic liquid additives [J].
Bai, Sai ;
Da, Peimei ;
Li, Cheng ;
Wang, Zhiping ;
Yuan, Zhongcheng ;
Fu, Fan ;
Kawecki, Maciej ;
Liu, Xianjie ;
Sakai, Nobuya ;
Wang, Jacob Tse-Wei ;
Huettner, Sven ;
Buecheler, Stephan ;
Fahlman, Mats ;
Gao, Feng ;
Snaith, Henry J. .
NATURE, 2019, 571 (7764) :245-+
[2]   Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells [J].
Bera, Ashok ;
Wu, Kewei ;
Sheikh, Arif ;
Alarousu, Erkki ;
Mohammed, Omar F. ;
Wu, Tom .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (49) :28494-28501
[3]   Carbon-Based CsPbBr3 Perovskite Solar Cells: All-Ambient Processes and High Thermal Stability [J].
Chang, Xiaowen ;
Li, Weiping ;
Zhu, Liqun ;
Liu, Huicong ;
Geng, Huifang ;
Xiang, Sisi ;
Liu, Jiaming ;
Chen, Haining .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (49) :33649-33655
[4]   SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress [J].
Chen, Yichuan ;
Meng, Qi ;
Zhang, Linrui ;
Han, Changbao ;
Gao, Hongli ;
Zhang, Yongzhe ;
Yan, Hui .
JOURNAL OF ENERGY CHEMISTRY, 2019, 35 :144-167
[5]   Green low-temperature-solution-processed in situ HI modified TiO2/SnO2 bilayer for efficient and stable planar perovskite solar cells build at ambient air conditions [J].
Deng, Yaxin ;
Li, Shuxian ;
Li, Xuandong ;
Wang, Rui ;
Li, Xin .
ELECTROCHIMICA ACTA, 2019, 326
[6]  
Duan J. L., 2020, ANGEW CHEM INT EDIT, V59, P11
[7]  
Duan J. L., 2019, ANGEW CHEM INT EDIT, V131, P45
[8]   Alkyl-Chain-Regulated Charge Transfer in Fluorescent Inorganic CsPbBr3 Perovskite Solar Cells [J].
Duan, Jialong ;
Wang, Yudi ;
Yang, Xiya ;
Tang, Qunwei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (11) :4391-4395
[9]   Inorganic perovskite solar cells: an emerging member of the photovoltaic community [J].
Duan, Jialong ;
Xu, Hongzhe ;
Sha, W. E. I. ;
Zhao, Yuanyuan ;
Wang, Yudi ;
Yang, Xiya ;
Tang, Qunwei .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (37) :21036-21068
[10]   Lanthanide Ions Doped CsPbBr3 Halides for HTM-Free 10.14%-Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open-Circuit Voltage of 1.594 V [J].
Duan, Jialong ;
Zhao, Yuanyuan ;
Yang, Xiya ;
Wang, Yudi ;
He, Benlin ;
Tang, Qunwei .
ADVANCED ENERGY MATERIALS, 2018, 8 (31)