Tornheim type series and nonlinear Euler sums

被引:28
作者
Xu, Ce [1 ]
Li, Zhonghua [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
关键词
Tornheim type series; Harmonic numbers; Polylogarithm function; Euler sums; Riemann zeta function; INTEGRALS;
D O I
10.1016/j.jnt.2016.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop an approach to evaluation of non-linear Euler sums. The approach is based on Tornheim type series computations. By the approach, we can obtain some closed form representations of quadratic and cubic sums in terms of zeta values and linear sums. Furthermore, we also evaluate several other series involving harmonic numbers. Some interesting new consequences and illustrative examples are considered. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 67
页数:28
相关论文
共 25 条
[1]  
[Anonymous], 1985, Ramanujan's Notebooks: Part 1
[2]  
[Anonymous], 2000, SPECIAL FUNCTIONS
[3]  
[Anonymous], MATHEMATICS
[4]  
[Anonymous], ELECT J COMBIN
[5]  
Bailey D.H., 1994, Exp. Math, V3, P17, DOI DOI 10.1080/10586458.1994.10504573
[6]  
Berndt B. C., 1989, Ramanujan's Notebooks Part II
[7]   EXPLICIT EVALUATION OF EULER SUMS [J].
BORWEIN, D ;
BORWEIN, JM ;
GIRGENSOHN, R .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 :277-294
[8]  
Borwein J, 1996, MATH INTELL, V18, P12
[9]   The evaluation of character Euler double sums [J].
Borwein, J. M. ;
Zucker, I. J. ;
Boersma, J. .
RAMANUJAN JOURNAL, 2008, 15 (03) :377-405
[10]   Special values of multiple polylogarithms [J].
Borwein, JM ;
Bradley, DM ;
Broadhurst, DJ ;
Lisonek, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (03) :907-941