Asymptotic Behavior of Positive Solutions for a Class of Quasi linear Elliptic Equations in R2

被引:4
作者
Adachi, Shinji [1 ]
Shibata, Masataka [2 ]
Watanabe, Tatsuya [3 ]
机构
[1] Shizuoka Univ, Fac Engn, Div Basic Engn, Hamamatsu, Shizuoka 4328561, Japan
[2] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
[3] Kyoto Sangyo Univ, Fac Sci, Dept Math, Kyoto 6038555, Japan
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2014年 / 57卷 / 02期
关键词
Quasilinear elliptic equation; Asymptotic behavior; Non-degeneracy; SCALAR FIELD-EQUATIONS; LEAST-ENERGY SOLUTIONS; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; GROUND-STATES; UNIQUENESS; EXISTENCE;
D O I
10.1619/fesi.57.297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the asymptotic behavior of the ground state of quasilinear Schrodinger equations in R-2. We show the asymptotic non-degeneracy and uniqueness of the ground state for a wide class of nonlinearities.
引用
收藏
页码:297 / 317
页数:21
相关论文
共 23 条
  • [1] ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC EQUATIONS WITH GENERAL NONLINEARITIES
    Adachi, Shinji
    Shibata, Masataka
    Watanabe, Tatsuya
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (01) : 97 - 118
  • [2] Adachi S, 2012, ADV NONLINEAR STUD, V12, P255
  • [3] Uniqueness of the ground state solutions of quasilinear Schrodinger equations
    Adachi, Shinji
    Watanabe, Tatsuya
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) : 819 - 833
  • [4] Adachi S, 2011, ADV DIFFERENTIAL EQU, V16, P289
  • [5] Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
  • [6] Berestycki 8H., 1984, C. R. Acad. Sci. Paris Ser. I Math., V297, P307
  • [7] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [8] Electron self-trapping in a discrete two-dimensional lattice
    Brizhik, L
    Eremko, A
    Piette, B
    Zakrzewski, W
    [J]. PHYSICA D, 2001, 159 (1-2): : 71 - 90
  • [9] Symmetry and monotonicity of least energy solutions
    Byeon, Jaeyoung
    Jeanjean, Louis
    Maris, Mihai
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (04) : 481 - 492
  • [10] Solutions for a quasilinear Schrodinger equation: a dual approach
    Colin, M
    Jeanjean, L
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) : 213 - 226