Subchronic Oral and Inhalation Toxicities: a Challenging Attempt for Modeling and Predication

被引:8
作者
Dobchev, Dimaitar A. [1 ,2 ]
Tulp, Indrek [3 ]
Karelson, Gunnar [1 ,2 ]
Tamm, Tarmo [1 ,4 ]
Taemm, Kaido [1 ,3 ]
Karelson, Mati [2 ,3 ]
机构
[1] MolCode Ltd, EE-51013 Tartu, Estonia
[2] Tallinn Univ Technol, Dept Chem, EE-19086 Tallinn, Estonia
[3] Univ Tartu, Dept Chem, EE-50411 Tartu, Estonia
[4] Univ Tartu, Inst Technol, EE-50411 Tartu, Estonia
关键词
Subchronic oral toxicity; Subchronic inhalation toxicity; Artificial neural network; QSAR; NOAEL; CHEMICAL-STRUCTURE;
D O I
10.1002/minf.201300033
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The article deals with a challenging attempt to model and predict "difficult" properties as long-term subchronic oral and inhalation toxicities (90 days) using nonlinear QSAR approach. This investigation is one of the first to tackle such multicomplex properties where we have employed nonlinear models based on artificial neural network for the prediction of NOAEL (no observable adverse effect level). Despite the complex nature of the NOAEL property based on in vivo rat experiments, the successful models can be used as alternative tools to non-animal tests for the initial assessment of these chronic toxicities. The model for oral subchronic toxicity is able to describe 88%, and the inhalation model 87% of the statistical variance. For the sake of future predictions, we have also defined in a quantitative way the applicability domain of all neural network models.
引用
收藏
页码:793 / 801
页数:9
相关论文
共 25 条
[1]  
Arbib MichaelA., 2002, HDB BRAIN THEORY NEU, V2nd
[2]  
Baskin Igor I., 2008, V458, P137
[3]   THE DEVELOPMENT AND USE OF QUANTUM-MECHANICAL MOLECULAR-MODELS .76. AM1 - A NEW GENERAL-PURPOSE QUANTUM-MECHANICAL MOLECULAR-MODEL [J].
DEWAR, MJS ;
ZOEBISCH, EG ;
HEALY, EF ;
STEWART, JJP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (13) :3902-3909
[4]   True prediction of lowest observed adverse effect levels [J].
Garcia-Domenech, R. ;
de Julian-Ortiz, J. V. ;
Besalu, E. .
MOLECULAR DIVERSITY, 2006, 10 (02) :159-168
[5]   TRAINING FEEDFORWARD NETWORKS WITH THE MARQUARDT ALGORITHM [J].
HAGAN, MT ;
MENHAJ, MB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (06) :989-993
[6]  
Haykin S., 1999, Neural Networks: A Comprehensive Foundation, DOI DOI 10.1017/S0269888998214044
[7]   A 90-day oral (dietary) toxicity study of the 2R,4R-isomer of monatin salt in Sprague-Dawley rats [J].
Hlywka, J. ;
Brathwaite, W. A. ;
Rihner, M. O. ;
Nikiforov, A. I. ;
Eapen, A. K. .
FOOD AND CHEMICAL TOXICOLOGY, 2011, 49 (12) :3249-3257
[8]   Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity [J].
Johnson, W. D. ;
Morrissey, R. L. ;
Usborne, A. L. ;
Kapetanovic, I. ;
Crowell, J. A. ;
Muzzio, M. ;
McCormick, D. L. .
FOOD AND CHEMICAL TOXICOLOGY, 2011, 49 (12) :3319-3327
[9]   Subchronic oral toxicity and metabolite profiling of the p53 stabilizing agent, CP-31398, in rats and dogs [J].
Johnson, William D. ;
Muzzio, Miguel ;
Detrisac, Carol J. ;
Kapetanovic, Izet M. ;
Kopelovich, Levy ;
McCormick, David L. .
TOXICOLOGY, 2011, 289 (2-3) :141-150
[10]   A 13-week subchronic oral toxicity study of L-serine in rats [J].
Kaneko, I. ;
Han, L. ;
Liu, T. ;
Li, J. ;
Zhao, Y. ;
Li, C. ;
Yi, Y. ;
Liang, A. ;
Hayamizu, K. .
FOOD AND CHEMICAL TOXICOLOGY, 2009, 47 (09) :2356-2360