An alternating-direction implicit orthogonal spline collocation scheme for nonlinear parabolic problems on rectangular polygons

被引:19
作者
Bialecki, Bernard [1 ]
Fernandes, Ryan I.
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[2] St Xavier Coll, Dept Math, Mapusa 403507, Goa, India
关键词
parabolic problems; alternating-direction implicit; extrapolation; orthogonal spline collocation; Gauss points; interpolants; implementation;
D O I
10.1137/050627885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear parabolic initial-boundary value problem on a rectangular polygon with the solution satisfying Robin boundary conditions with variable coefficients. An approximation to the solution at the desired time value is obtained using an alternating-direction implicit extrapolated Crank - Nicolson scheme in which orthogonal spline collocation with piecewise polynomials of an arbitrary degree is used for spatial discretization. At each time level, the scheme determines the intermediate solution along horizontal lines and the approximate solution along vertical lines passing through the Gauss points. Only at the last time level is the approximate solution along vertical lines converted into the approximate solution defined on the entire rectangular polygon. This property of our approach leads to its efficient implementation and its applicability to rectangular polygons.
引用
收藏
页码:1054 / 1077
页数:24
相关论文
共 29 条
[1]  
BANGIA VK, 1978, 7414 SPE
[2]   A nonoverlapping domain decomposition method for orthogonal spline collocation problems [J].
Bialecki, B ;
Dryja, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (05) :1709-1728
[3]   Convergence analysis of orthogonal spline collocation for elliptic boundary value problems [J].
Bialecki, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :617-631
[4]  
BIALECKI B, 1993, MATH COMPUT, V60, P545, DOI 10.1090/S0025-5718-1993-1176704-7
[5]   An orthogonal spline collocation alternating direction implicit Crank-Nicolson method for linear parabolic problems on rectangles [J].
Bialecki, B ;
Fernandes, RI .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1414-1434
[6]   PACKAGE FOR CALCULATING WITH B-SPLINES [J].
BOOR, CD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (03) :441-472
[7]   ALTERNATING DIRECTION MULTISTEP METHODS FOR PARABOLIC PROBLEMS ITERATIVE STABILIZATION [J].
BRAMBLE, JH ;
EWING, RE ;
LI, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (04) :904-919
[8]   Solving degenerate reaction-diffusion equations via variable step Peaceman-Rachford splitting [J].
Cheng, H ;
Lin, P ;
Sheng, Q ;
Tan, RCE .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (04) :1273-1292
[9]   A uniformly convergent alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems [J].
Clavero, C ;
Gracia, JL ;
Jorge, JC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (01) :155-172
[10]  
de Boor C., 2001, APPL MATH SCI, V27