Charged Covalent Triazine Frameworks for CO2 Capture and Conversion

被引:300
作者
Buyukcakir, Onur [1 ]
Je, Sang Hyun [1 ]
Talapaneni, Siddulu Naidu [1 ]
Kim, Daeok [1 ]
Coskun, Ali [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, EEWS, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Chem, Daejeon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
hierarchical porosity; ionothermal synthesis; ionic networks; charged porous polymers; CO2; fixation; CARBON-DIOXIDE CAPTURE; POROUS AROMATIC FRAMEWORK; ORGANIC FRAMEWORKS; SORPTION PROPERTIES; CATIONIC POLYMERS; MOLECULAR CAGES; POLYMERIZATION; NETWORKS; CONSTRUCTION; TEMPERATURE;
D O I
10.1021/acsami.6b16769
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The quest for the development of new porous materials addressing both CO2 capture from various sources and its conversion into useful products is a very active research area and also critical in order to develop a more sustainable and environmentally-friendly society. Here, we present the first charged covalent triazine framework (cCTF) prepared by simply heating nitrile functionalized dicationic viologen derivatives under ionothermal reaction conditions using ZnCl2 as both solvent and trimerization catalyst. It has been demonstrated that the surface area, pore volume/size of cCTFs can be simply controlled by varying the synthesis temperature and the ZnCl2, content. Specifically, increasing the reaction temperature led to controlled increase in the mesopore content and facilitated the formation of hierarchical porosity, which is critical to ensure efficient mass transport within porous materials. The resulting cCTFs showed high specific surface areas up to 1247 m(2) g(-1), and high physicochemical stability. The incorporation of ionic functional moieties to porous organic polymers improved substantially their CO2 affinity (up to 133 mg g(-1), at 1 bar and 273 K) and transformed them into hierarchically porous organocatalysts for CO2 conversion. More importantly, the ionic nature of cCTFs, homogeneous charge distribution together with hierarchical porosity offered a perfect platform for the catalytic conversion of CO2 into cyclic carbonates in the presence of epoxides through an atom economy reaction in high yields and exclusive product selectivity. These results clearly demonstrate the promising aspect of incorporation of charged units into the porous organic polymers for the development of highly efficient porous organocatalysts for CO2 capture and fixation.
引用
收藏
页码:7209 / 7216
页数:8
相关论文
共 75 条
[1]   Synthesis and high-throughput testing of multilayered supported ionic liquid catalysts for the conversion of CO2 and epoxides into cyclic carbonates [J].
Agrigento, Paola ;
Al-Amsyar, Syed M. ;
Soree, Benjamin ;
Taherimehr, Masoumeh ;
Gruttadauria, Michelangelo ;
Aprile, Carmela ;
Pescarmona, Paolo P. .
CATALYSIS SCIENCE & TECHNOLOGY, 2014, 4 (06) :1598-1607
[2]   Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture [J].
Bae, Youn-Sang ;
Snurr, Randall Q. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (49) :11586-11596
[3]   Shaping Covalent Triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid [J].
Bavykina, Anastasiya V. ;
Rozhko, Elena ;
Goesten, Maarten G. ;
Wezendonk, Tim ;
Seoane, Beatriz ;
Kapteijn, Freek ;
Makkee, Michiel ;
Gascon, Jorge .
CHEMCATCHEM, 2016, 8 (13) :2217-2221
[4]   Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF) [J].
Ben, Teng ;
Li, Yanqiang ;
Zhu, Liangkui ;
Zhang, Daliang ;
Cao, Dapeng ;
Xiang, Zhonghua ;
Yao, Xiangdong ;
Qiu, Shilun .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) :8370-8376
[5]   Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area [J].
Ben, Teng ;
Ren, Hao ;
Ma, Shengqian ;
Cao, Dapeng ;
Lan, Jianhui ;
Jing, Xiaofei ;
Wang, Wenchuan ;
Xu, Jun ;
Deng, Feng ;
Simmons, Jason M. ;
Qiu, Shilun ;
Zhu, Guangshan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (50) :9457-9460
[6]   Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation [J].
Bhunia, Asamanjoy ;
Boldog, Ishtvan ;
Moeller, Andreas ;
Janiak, Christoph .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (47) :14990-14999
[7]   Post-synthetic Structural Processing in a Metal-Organic Framework Material as a Mechanism for Exceptional CO2/N2 Selectivity [J].
Bloch, Witold M. ;
Babarao, Ravichandar ;
Hill, Matthew R. ;
Doonan, Christian J. ;
Sumby, Christopher J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (28) :10441-10448
[8]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[9]   Imidazolium-based silica microreactors for the efficient conversion of carbon dioxide [J].
Buaki-Sogo, Mireia ;
Garcia, Hermenegildo ;
Aprile, Carmela .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (02) :1222-1230
[10]   Porous cationic polymers: the impact of counteranions and charges on CO2 capture and conversion [J].
Buyukcakir, Onur ;
Je, Sang Hyun ;
Choi, Dong Shin ;
Talapaneni, Siddulu Naiudu ;
Seo, Yongbeom ;
Jung, Yousung ;
Polychronopoulou, Kyriaki ;
Coskun, Ali .
CHEMICAL COMMUNICATIONS, 2016, 52 (05) :934-937