Programmable DNA tile self-assembly using a hierarchical sub-tile strategy

被引:59
作者
Shi, Xiaolong [1 ]
Lu, Wei [1 ]
Wang, Zhiyu [1 ]
Pan, Linqiang [1 ]
Cui, Guangzhao [1 ,2 ]
Xu, Jin [1 ,3 ]
LaBean, Thomas H. [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
[2] Zhengzhou Univ Light Ind, Henan Key Lab Informat Based Elect Appliances, Zhengzhou 450002, Peoples R China
[3] Peking Univ, Sch Elect Engn & Comp Sci, Inst Software, Beijing 100871, Peoples R China
[4] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
基金
美国国家科学基金会;
关键词
DNA self-assembly; DNA tile; sub-tile; structural DNA nanotechnology; programmable nanostructure; FLEXIBILITY; SYMMETRY; PROTEIN; DESIGN;
D O I
10.1088/0957-4484/25/7/075602
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.
引用
收藏
页数:11
相关论文
共 33 条
[11]   DNA-templated self-assembly of protein and nanoparticle linear arrays [J].
Li, HY ;
Park, SH ;
Reif, JH ;
LaBean, TH ;
Yan, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (02) :418-419
[12]   DNA tile based self-assembly: Building complex nanoarchitectures [J].
Lin, Chenxiang ;
Liu, Yan ;
Rinker, Sherri ;
Yan, Hao .
CHEMPHYSCHEM, 2006, 7 (08) :1641-1647
[13]   DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires [J].
Liu, D ;
Park, SH ;
Reif, JH ;
LaBean, TH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (03) :717-722
[14]   Self-assembling a molecular pegboard [J].
Lund, K ;
Liu, Y ;
Lindsay, S ;
Yan, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (50) :17606-17607
[15]   Logical computation using algorithmic self-assembly of DNA triple-crossover molecules [J].
Mao, CD ;
LaBean, TH ;
Reif, JH ;
Seeman, NC .
NATURE, 2000, 407 (6803) :493-496
[16]   Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures [J].
Park, SH ;
Pistol, C ;
Ahn, SJ ;
Reif, JH ;
Lebeck, AR ;
Dwyer, C ;
LaBean, TH .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (05) :735-739
[17]   Stepwise self-assembly of DNA tile lattices using dsDNA bridges [J].
Park, Sung Ha ;
Finkelstein, Gleb ;
LaBean, Thomas H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (01) :40-+
[18]   Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures [J].
Reishus, D ;
Shaw, B ;
Brun, Y ;
Chelyapov, N ;
Adleman, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (50) :17590-17591
[19]   Design and characterization of programmable DNA nanotubes [J].
Rothemund, PWK ;
Ekani-Nkodo, A ;
Papadakis, N ;
Kumar, A ;
Fygenson, DK ;
Winfree, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (50) :16344-16352
[20]   Algorithmic self-assembly of DNA Sierpinski triangles [J].
Rothemund, PWK ;
Papadakis, N ;
Winfree, E .
PLOS BIOLOGY, 2004, 2 (12) :2041-2053