Modeling and Optimization of High-Volume Fly Ash Self-Compacting Concrete Containing Crumb Rubber and Calcium Carbide Residue Using Response Surface Methodology

被引:10
|
作者
Kelechi, Sylvia E. [1 ,2 ]
Uche, O. A. U. [1 ]
Adamu, Musa [1 ,3 ]
Alanazi, Hani [4 ]
Okokpujie, I. P. [5 ,6 ]
Ibrahim, Yasser E. [3 ]
Obianyo, Ifeyinwa I. [2 ,7 ]
机构
[1] Bayero Univ, Dept Civil Engn, Kano 3011, Kano State, Nigeria
[2] Purdue Univ Calumet, Dept Mech & Civil Engn, Hammond, IN 46323 USA
[3] Prince Sultan Univ, Engn Management Dept, Riyadh 11586, Saudi Arabia
[4] Majmaah Univ, Coll Engn, Dept Civil & Environm Engn, Al Majmaah 11952, Saudi Arabia
[5] Afe Babalola Univ, Dept Mech Engn & Mechatron Engn, Ado Ekiti, Ekiti, Nigeria
[6] Univ Johannesburg, Dept Mech & Ind Engn Technol, ZA-2028 Johannesburg, South Africa
[7] African Univ Sci & Technol, Dept Mat Sci & Engn, Abuja, Nigeria
关键词
Crumb rubber; Fly ash; Calcium carbide residue; Self-compacting concrete; Response surface methodology; MECHANICAL-PROPERTIES; NANO-SILICA; PERFORMANCE; HYDRATION; BINDER; FRESH;
D O I
10.1007/s13369-022-06850-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this research, the fresh and hardened properties of high-volume fly ash self-compacting rubbercrete containing calcium carbide waste were optimized using response surface methodology (RSM). The variables used were crumb rubber (CR) as a partial substitute by volume of fine aggregate at 0% to 40%, fly ash (FA) as a partial substitute to cement at 0% to 80%, and calcium carbide residue (CCR) as an additive by weight of cementitious materials at 0% to 20% levels at increment rate of 5%. The fresh properties of the self-compacting concrete (SCC) considered were passing ability, slump flow, and segregation resistance, while the hardened properties examined were compressive strength, flexural strength, splitting tensile strength, and microstructural properties. The experimental results showed that the incorporation of FA and CCR improved the passing ability and slump flow. However, increasing the CR content retarded it, although the segregation resistance was improved with the increase in proportion of the replacement materials. Similarly, CR, CCR, and FA improved the strength of the SCC; however, the reverse was the case at higher proportion replacement beyond 10% CR, 10% CCR, and 40% FA. The proposed models were found to be relevant for all P-value reactions of less than 5%. Results of the multi-objective optimization indicated that the optimum mixture could be achieved by replacing, by volume, the fine aggregate with 11.29% of CR, cement with 39.08% FA by weight, and total cementitious material by 5% CCR by weight of cementitious materials.
引用
收藏
页码:13467 / 13486
页数:20
相关论文
共 50 条
  • [31] Assessment of flexural response of RC beams and unrestrained shrinkage of fiber-reinforced high-volume fly ash-based no-aggregate concrete and self-compacting concrete
    Kudva, Laxman P.
    Gopinatha, Nayak
    Shetty, Kiran K.
    Sugandhini, H. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 431
  • [32] Durability and Cost Analysis of High-Volume Fly Ash Blended Self-Compacting Mortar
    Bala, Anu
    Shelote, Kunal
    Gupta, Supratic
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2024, 36 (03)
  • [33] Prediction of compressive strength of high-volume fly ash self-compacting concrete with silica fume using machine learning techniques
    Kumar, Shashikant
    Kumar, Rakesh
    Rai, Baboo
    Samui, Pijush
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 438
  • [34] Properties of self-compacting concrete prepared with ternary Portland cement-high volume fly ash-calcium carbonate blends
    Promsawat, Pongsakon
    Chatveera, Burachat
    Sua-iam, Gritsada
    Makul, Natt
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2020, 13
  • [35] PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE CONTAINING CRUMB RUBBER AND RECYCLED AGGREGATE USING RESPONSE SURFACE METHODOLOGY
    Dahish, Hany A.
    INTERNATIONAL JOURNAL OF GEOMATE, 2023, 24 (104): : 117 - 124
  • [36] Shrinkage behaviour of self-compacting concrete with a high volume of fly ash and slag experimental tests and analytical assessment
    Klemczak, Barbara
    Golaszewski, Jacek
    Smolana, Aneta
    Golaszewska, Malgorzata
    Cygan, Grzegorz
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 400
  • [37] Prediction of properties of self-compacting concrete containing fly ash using artificial neural network
    Douma, Omar Belalia
    Boukhatem, Bakhta
    Ghrici, Mohamed
    Tagnit-Hamou, Arezki
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S707 - S718
  • [38] Prediction of properties of self-compacting concrete containing fly ash using artificial neural network
    Omar Belalia Douma
    Bakhta Boukhatem
    Mohamed Ghrici
    Arezki Tagnit-Hamou
    Neural Computing and Applications, 2017, 28 : 707 - 718
  • [39] The effect of high-calcium fly ash on selected properties of self-compacting concrete
    Ponikiewski, T.
    Golaszewski, J.
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2014, 14 (03) : 455 - 465
  • [40] Prediction of Compressive Strength in Self-compacting Concrete Containing Fly Ash and Silica Fume Using ANN and SVM
    Abunassar, Nouraldin
    Alas, Mustafa
    Ali, Shaban Ismael Albrka
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (04) : 5171 - 5184