ON FUNCTIONS WITH A CONJUGATE

被引:2
作者
Baird, Paul [1 ]
Eastwood, Michael [2 ]
机构
[1] Univ Bretagne Occidentale, Lab Math Bretagne Atlantique, UMR 6205, 6 Av Victor Le Gorgeu,CS 93837, F-29238 Brest 3, France
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
conjugate function; conformal invariant; partial differential inequality; partial differential equation; 3-harmonic function; conformal Killing field;
D O I
10.5802/aif.2931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Harmonic functions of two variables are exactly those that admit a conjugate, namely a function whose gradient has the same length and is' everywhere orthogonal to the gradient of the original function. We show that there are also partial differential equations controlling the functions of three variables that admit a conjugate.
引用
收藏
页码:277 / 314
页数:38
相关论文
共 15 条
[1]  
Ababou R, 1999, MATH Z, V231, P589, DOI 10.1007/PL00004744
[2]  
[Anonymous], 1984, CAMBRIDGE MONOGRAPHS, DOI DOI 10.1017/CBO9780511564048
[3]  
BAIRD P., 2005, DIFFERENTIAL GEOMETR, P479
[4]  
BAIRD P., 2008, RIMS KOKYUROKU, V1610, P1
[5]   CR geometry and conformal foliations [J].
Baird, Paul ;
Eastwood, Michael .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (01) :73-90
[6]   Harmonic morphisms on heaven spaces [J].
Baird, Paul ;
Pantilie, Radu .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :198-204
[7]  
Baird Paul, 2003, London Mathematical Society Monographs. New Series, V29
[8]  
Bojarski B., 1987, Banach Center Publ., V19, P25
[9]   Higher symmetries of the Laplacian [J].
Eastwood, M .
ANNALS OF MATHEMATICS, 2005, 161 (03) :1645-1665
[10]   INVARIANTS OF CONFORMAL DENSITIES [J].
EASTWOOD, MG ;
GRAHAM, CR .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :633-671