The high-precision computation of the period of the simple pendulum

被引:0
作者
Carvalhaes, Claudio G. [1 ,2 ]
Suppes, Patrick [1 ]
机构
[1] Stanford Univ, Ctr Study Language & Informat, Stanford, CA 94305 USA
[2] Univ Estado Rio de Janeiro, Inst Matemat & Estat, BR-20550011 Rio De Janeiro, Brazil
来源
REVISTA BRASILEIRA DE ENSINO DE FISICA | 2009年 / 31卷 / 02期
关键词
simple pendulum; elliptic integral; arithmetic-geometric mean; renormalization; APPROXIMATIONS; FORMULAS; PI;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We present the iterative method of using the arithmetic-geometric mean in the computation of the time period of the simple pendulum and compare it with the power-series method. Analytical approximations are derived by both methods and compared in terms of their numerical precision. The results are strongly favorable to the arithmetic-geometric mean due to its fast convergence.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Classification and analysis of simple pendulum using artificial neural network approach [J].
Wadhwa, Adya ;
Wadhwa, Ajay .
EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (06)
[42]   A high-precision numerical method based on spectral deferred correction for solving the time-fractional Allen-Cahn equation [J].
Wang, Jing ;
Chen, Xuejuan ;
Chen, Jinghua .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 180 :1-27
[43]   A novel high-precision non-classical method to solve fractional rheology and viscoelastic vibration: Linear computational complexity and experimental verification [J].
Liu, Tian-Ming ;
Chen, Yan-Mao ;
Liu, Ji-Ke ;
Liu, Qi-Xian .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2025, 315
[44]   Proof of the small angle approximation sinθ≈θ using the geometry and motion of a simple pendulum [J].
Bissell, J. J. .
INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2025, 56 (03) :548-554
[45]   Performance of First and Second Order Sliding Mode Control Strategies for a Simple Pendulum [J].
Reddy, B. Amarendra ;
Kumar, B. Pavan ;
Rao, G. Ananda ;
Anusha, K. .
HELIX, 2018, 8 (02) :3141-3146
[46]   Expanding the simple pendulum's rotation solution in action-angle variables [J].
Lara, Martin ;
Ferrer, Sebastian .
EUROPEAN JOURNAL OF PHYSICS, 2015, 36 (05)
[47]   An improved 'heuristic' approximation for the period of a nonlinear pendulum:: Linear analysis of a classical nonlinear problem [J].
Belendez, A. ;
Hernandez, A. ;
Belendez, T. ;
Marquez, A. ;
Neipp, C. .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2007, 8 (03) :329-334
[48]   Subharmonic resonance bifurcation and chaos of simple pendulum system with vertical excitation and horizontal constraint [J].
Zhao Wu ;
Zhang Hong-Bin ;
Sun Chao-Fan ;
Huang Dan ;
Fan Jun-Kai .
ACTA PHYSICA SINICA, 2021, 70 (24)
[49]   Development of a computer-based simple pendulum experiment set for teaching and learning physics [J].
Sukmak, Warawut ;
Musik, Panjit .
INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2021, 14 (01) :1-8
[50]   Arbitrary precision computation of the set of stabilising gains for time-delay LTI systems [J].
Bayhan, Nevra ;
Soylemez, Mehmet Turan .
INTERNATIONAL JOURNAL OF CONTROL, 2012, 85 (01) :26-40