The high-precision computation of the period of the simple pendulum

被引:0
作者
Carvalhaes, Claudio G. [1 ,2 ]
Suppes, Patrick [1 ]
机构
[1] Stanford Univ, Ctr Study Language & Informat, Stanford, CA 94305 USA
[2] Univ Estado Rio de Janeiro, Inst Matemat & Estat, BR-20550011 Rio De Janeiro, Brazil
来源
REVISTA BRASILEIRA DE ENSINO DE FISICA | 2009年 / 31卷 / 02期
关键词
simple pendulum; elliptic integral; arithmetic-geometric mean; renormalization; APPROXIMATIONS; FORMULAS; PI;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We present the iterative method of using the arithmetic-geometric mean in the computation of the time period of the simple pendulum and compare it with the power-series method. Analytical approximations are derived by both methods and compared in terms of their numerical precision. The results are strongly favorable to the arithmetic-geometric mean due to its fast convergence.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Three spreadsheet models of a simple pendulum [J].
Benacka, Jan .
SPREADSHEETS IN EDUCATION, 2008, 3 (01) :59-69
[22]   Global analysis of fragmentation functions to charged hadrons with high-precision data from the LHC [J].
Gao, Jun ;
Liu, Chongyang ;
Shen, Xiaomin ;
Xing, Hongxi ;
Zhao, Yuxiang .
PHYSICAL REVIEW D, 2024, 110 (11)
[23]   High-precision Gauss-Turan quadrature rules for Laguerre and Hermite weight functions [J].
Gautschi, Walter .
NUMERICAL ALGORITHMS, 2014, 67 (01) :59-72
[24]   Simple Pendulum analysis - A Vision based approach [J].
Kavithaa, R. ;
Babu, Umesh R. ;
Deepak, C. R. .
2013 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND NETWORKING TECHNOLOGIES (ICCCNT), 2013,
[25]   Resonance oscillation of a damped driven simple pendulum [J].
Kharkongor, D. ;
Mahato, Mangal C. .
EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (06)
[26]   Motion of a simple pendulum: a digital technology approach [J].
Rivera-Figueroa, Antonio ;
Lima-Zempoalteca, Isaias .
INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2021, 52 (04) :550-564
[27]   An anharmonic solution to the equation of motion for the simple pendulum [J].
Johannessen, Kim .
EUROPEAN JOURNAL OF PHYSICS, 2011, 32 (02) :407-417
[28]   The Study of the Simple Gravitational Pendulum with Excel Spreadsheets [J].
Grigore, Ionel ;
Stoica, Daniela ;
Miron, Cristina .
ELEARNING CHALLENGES AND NEW HORIZONS, VOL 1, 2018, :412-419
[29]   Unleashing Simple Pendulum Dynamics with Posit Arithmetic [J].
Aldhapati, Avinash ;
Kumar, Ashwini Jaya ;
Subramanian, Rajaraman .
NEXT GENERATION ARITHMETIC, CONGA 2024, 2024, 14666 :104-124
[30]   Nonlinear analysis of a simple pendulum with large displacement [J].
Ma, Rujian ;
Li, Guixi ;
Zhao, Dong .
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINERING CONGRESS AND EXPOSITION 2007, VOL 9, PTS A-C: MECHANICAL SYSTEMS AND CONTROL, 2008, :1925-1928