CONTROL THEOREMS FOR ELLIPTIC CURVES OVER FUNCTION FIELDS

被引:10
作者
Bandini, A. [1 ]
Longhi, I. [2 ]
机构
[1] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
[2] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
关键词
Function fields; elliptic curves; Selmer groups; Iwasawa theory; Fitting ideals; FITTING IDEALS; IWASAWA THEORY; VARIETIES; POINTS;
D O I
10.1142/S1793042109002067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a global field of characteristic p > 0, F/F a Galois extension with Gal(F/F) similar or equal to Z(p)(N) and E/F a non-isotrivial elliptic curve. We study the behavior of Selmer groups Sel(E)(L)(l) (l any prime) as L varies through the subextensions of F via appropriate versions of Mazur's Control Theorem. In the case l = p, we let F = boolean OR F(d) where F(d)/F is a Z(p)(d)-extension. We prove that Sel(E)(F(d))(p) is a cofinitely generated Z(p)[[Gal(F(d)/F)]]-module and we associate to its Pontrjagin dual a Fitting ideal. This allows to define an algebraic L-function associated to E in Z(p)[[Gal(F/F)]], providing an ingredient for a function field analogue of Iwasawa's Main Conjecture for elliptic curves.
引用
收藏
页码:229 / 256
页数:28
相关论文
共 26 条
[1]  
[Anonymous], 1986, GRADUATE TEXTS MATH
[2]  
[Anonymous], 1998, ELEMENTS MATH BERLIN
[3]  
[Anonymous], 1980, PRINCETON MATH SERIE
[4]  
Balister P. N., 1997, ASIAN J MATH, V1, P224, DOI [10.4310/AJM.1997.v1.n2.a2, DOI 10.4310/AJM.1997.V1.N2.A2]
[5]  
BANDINI A, P ADIC L FUNCT UNPUB
[6]   Higher Heegner points on elliptic curves over function fields [J].
Breuer, F .
JOURNAL OF NUMBER THEORY, 2004, 104 (02) :315-326
[7]  
BROWN ML, 2004, LECT NOTES MATH, V1849
[8]  
GOSS D, 1992, OHIO ST U M, V2, P227
[9]  
Greenberg R, 1999, LECT NOTES MATH, V1716, P51
[10]  
Greenberg R., 1999, IAS/Park City Math. Ser, V9, P407