Evaluation of genotype MTBDRplus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples

被引:58
作者
Meaza, Abyot [1 ]
Kebede, Abebaw [1 ]
Yaregal, Zelalem [1 ]
Dagne, Zekarias [1 ]
Moga, Shewki [1 ]
Yenew, Bazezew [1 ]
Diriba, Getu [1 ]
Molalign, Helina [1 ]
Tadesse, Mengistu [1 ]
Adisse, Desalegn [1 ]
Getahun, Muluwork [1 ]
Desta, Kassu [2 ]
机构
[1] Ethiopian Publ Hlth Inst, Addis Ababa, Ethiopia
[2] Univ Addis Ababa, Coll Hlth Sci, Dept Med Lab Sci, Addis Ababa, Ethiopia
关键词
Performance; Genotype MTBDRplus VER 2.0; MDR-TB; MYCOBACTERIUM-TUBERCULOSIS; RAPID DETECTION; PERFORMANCE; RESISTANCE;
D O I
10.1186/s12879-017-2389-6
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: Multi drug resistant tuberculosis (MDR-TB) poses formidable challenges to TB control due to its complex diagnostic and treatment challenges and often associated with a high rate of mortality. Accurate and rapid detection of MDR-TB is critical for timely initiation of treatment. Line Probe Assay (LPA) is a qualitative in vitro diagnostic test based on DNA-STRIP technology for the identification of the M. tuberculosis complex and its resistance to rifampicin (RMP) and/or isoniazid (INH). Hain Lifescience, GmbH, Germany has improved the sensitivity of Genotype MTBDRplus VER 2.0 LPA for the detection of MDR-TB; with the possibility of applying the tool in smear negative sputum samples. Method: A cross sectional study was conducted on 274 presumptive MDR-TB patients referred to the National TB Reference Laboratory (NTRL), Ethiopian Public Health Institute (EPHI) who submitted sputum samples for laboratory diagnosis of drug resistant-TB testing. Seventy-two smear and culture positive samples processed in smear positive direct LPA category and 197 smear negative sputum samples were processed for direct LPA. Among the smear negative samples 145 (73.6%) were culture negative and 26 (13.2%) were culture positive. All specimens were processed using NALC-NaOH method and ZN smear microscopy done from sediments. Genotype MTBDRplus VER 2.0 done from processed sputum sediments and the result was compared against the reference, BACTEC MGIT 960 culture and DST. Sensitivity, specificity, PPV and NPV of Genotype MTBDRplus VER 2.0 assay was determined and P-value <0.05 was considered as statistically significant. Results: The sensitivity, specificity, PPV and NPV of Genotype MTBDRplus VER 2.0 LPA were 96.4, 100, 100 and 96.9%, respectively for the detection of MDR-TB from direct smear positive sputum samples. The sensitivity, specificity, PPV and NPV of Genotype MTBDR plus VER 2.0 LPA were 77.8, 97.2, 82.4 and 97.2%, respectively, for the detection of M. tuberculosis from direct smear negative sputum samples. Fourteen (53.8%) samples had valid results with LPA among the 26 smear negative culture positive samples. The remaining 8 (30.8%) and 4 (15.4%) were invalid and negative with LPA, respectively. The sensitivity and specificity of Genotype MTBDRplus VER 2.0 LPA were 100% for the detection of MDR-TB among 14 direct smear negative and culture positive sputum samples. The most common mutations associated with RMP and INH resistance were S531L and S315TL, respectively. A single rare mutation (C15T/A16G) was detected for INH resistance. Conclusion: The diagnostic performance of Genotype MTBDRplus VER 2.0 LPA in direct smear positive sputum sample was highly sensitive and specific for early detection of MDR-TB. However, the diagnostic performance of this molecular assay in direct smear negative sputum sample was low and showed a high level of invalid results for detection of M. tuberculosis and its resistance to RMP and/or INH so it is unlikely to implement Genotype MTBDRplus VER 2.0 for the detection of MDR-TB in direct smear negative sample in our routine settings. The sensitivity of the assay should be improved for detection of MDR-TB in direct smear negative sputum specimens.
引用
收藏
页数:8
相关论文
共 22 条
[1]   Rapid screening of MDR-TB using molecular Line Probe Assay is feasible in Uganda [J].
Albert, Heidi ;
Bwanga, Freddie ;
Mukkada, Sheena ;
Nyesiga, Barnabas ;
Ademun, Julius Patrick ;
Lukyamuzi, George ;
Haile, Melles ;
Hoffner, Sven ;
Joloba, Moses ;
O'Brien, Richard .
BMC INFECTIOUS DISEASES, 2010, 10
[2]   Validation of the GenoType® MTBDRplus assay for detection of MDR-TB in a public health laboratory in Thailand [J].
Anek-vorapong, Rapeepun ;
Sinthuwattanawibool, Chalinthorn ;
Podewils, Laura Jean ;
McCarthy, Kimberly ;
Ngamlert, Keerataya ;
Promsarin, Busakorn ;
Varma, Jay K. .
BMC INFECTIOUS DISEASES, 2010, 10
[3]  
[Anonymous], 2012, GGENOTYPE MTBDRPLUS
[4]  
[Anonymous], 2007, SD BIOL PACK INS RAP
[5]  
Banoo S, 2010, NAT REV MICROBIOL, pS17, DOI [10.1038/nrmicro1523, 10.1038/nrmico1523]
[6]   The Diagnostic Performance of the GenoType MTBDRplus Version 2 Line Probe Assay Is Equivalent to That of the Xpert MTB/RIF Assay [J].
Barnard, M. ;
Gey van Pittius, N. C. ;
van Helden, P. D. ;
Bosman, M. ;
Coetzee, G. ;
Warren, R. M. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2012, 50 (11) :3712-3716
[7]   First Evaluation of an Improved Assay for Molecular Genetic Detection of Tuberculosis as Well as Rifampin and Isoniazid Resistances [J].
Crudu, Valeriu ;
Stratan, Ecaterina ;
Romancenco, Elena ;
Allerheiligen, Vera ;
Hillemann, Andreas ;
Moraru, Nicolae .
JOURNAL OF CLINICAL MICROBIOLOGY, 2012, 50 (04) :1264-1269
[8]  
Eshetu L, 2014, ASLM 2 ROUND C
[9]   Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens [J].
Hillemann, Doris ;
Ruesch-Gerdes, Sabine ;
Richter, Elvira .
JOURNAL OF CLINICAL MICROBIOLOGY, 2007, 45 (08) :2635-2640
[10]   The first population-based national tuberculosis prevalence survey in Ethiopia, 2010-2011 [J].
Kebede, A. H. ;
Alebachew, Z. ;
Tsegaye, F. ;
Lemma, E. ;
Abebe, A. ;
Agonafir, M. ;
Kebede, A. J. ;
Demissie, D. ;
Girmachew, F. ;
Yaregal, Z. ;
Dana, F. ;
Getahun, M. ;
Fiseha, Y. ;
Meaza, A. ;
Dirse, N. ;
Timimi, H. ;
Sismanidis, C. ;
Tadolini, M. ;
Onozaki, I. .
INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2014, 18 (06) :635-639