Shrinking the tube:: A new support vector regression algorithm

被引:0
作者
Schölkopf, B [1 ]
Bartlett, P [1 ]
Smola, A [1 ]
Williamson, R [1 ]
机构
[1] GMD FIRST, D-12489 Berlin, Germany
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11 | 1999年 / 11卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new algorithm for Support Vector regression is described. For a priori chosen v, it automatically adjusts a flexible tube of minimal radius to the data such that at most a fraction v of the data points lie outside. Moreover, it is shown how to use parametric tube shapes with non-constant radius. The algorithm is analysed theoretically and experimentally.
引用
收藏
页码:330 / 336
页数:7
相关论文
共 10 条
  • [1] [Anonymous], 1998, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, PERSPECTIVES IN NEURAL COMPUTING
  • [2] Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
  • [3] Osuna EE, 1999, ADVANCES IN KERNEL METHODS, P271
  • [4] SCHOLKOPF A, 1998, 1998031 TR
  • [5] Scholkopf B, 1998, ADV NEUR IN, V10, P640
  • [6] Comparing support vector machines with Gaussian kernels to radial basis function classifiers
    Scholkopf, B
    Sung, KK
    Burges, CJC
    Girosi, F
    Niyogi, P
    Poggio, T
    Vapnik, V
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (11) : 2758 - 2765
  • [7] SCHOLKOPF B, 1998, P 8 INT C ART NEUR N, P111
  • [8] Scholkopf B., 1995, KDD
  • [9] Stitson MO, 1999, ADVANCES IN KERNEL METHODS, P285
  • [10] Vapnik V, 1999, NATURE STAT LEARNING