Universality of the Berezinskii-Kosterlitz-Thouless type of phase transition in the dipolar XY-model

被引:11
作者
Vasiliev, A. Yu [1 ,2 ]
Tarkhov, A. E. [1 ,3 ]
Menshikov, L. I. [1 ,4 ]
Fedichev, P. O. [1 ,2 ]
Fischer, Uwe R. [5 ]
机构
[1] Quantum Pharmaceut Ltd, Moscow, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[3] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119992, Russia
[4] Northern Arctic Fed Univ, Arkhangelsk 163002, Russia
[5] Seoul Natl Univ, Dept Phys & Astron, Ctr Theoret Phys, Seoul 151747, South Korea
关键词
dipolar XY model; Berezinskii-Kosterlitz-Thouless; phase transition; LONG-RANGE ORDER; STATES;
D O I
10.1088/1367-2630/16/5/053011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the nature of the phase transition occurring in a planar XY-model spin system with dipole-dipole interactions. It is demonstrated that a Berezinskii-Kosterlitz-Thouless (BKT) type of phase transition always takes place at a finite temperature separating the ordered (ferro) and the disordered (para) phases. The low-temperature phase corresponds to an ordered state with thermal fluctuations, composed of a 'gas' of bound vortex-antivortex pairs, which would, when considered isolated, be characterized by a constant vortex-antivortex attraction force which is due to the dipolar interaction term in the Hamiltonian. Using a topological charge model, we show that small bound pairs are easily polarized, and screen the vortex-antivortex interaction in sufficiently large pairs. Screening changes the linear attraction potential of vortices to a logarithmic one, and leads to the familiar pair dissociation mechanism of the BKT type phase transition. The topological charge model is confirmed by numerical simulations, in which we demonstrate that the transition temperature slightly increases when compared with the BKT result for short-range interactions.
引用
收藏
页数:16
相关论文
共 51 条
[1]   Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality [J].
Adams, Allan ;
Carr, Lincoln D. ;
Schaefer, Thomas ;
Steinberg, Peter ;
Thomas, John E. .
NEW JOURNAL OF PHYSICS, 2012, 14
[2]  
[Anonymous], 1986, STAT PHYS
[3]  
[Anonymous], ELECTRODYNAMICS CONT
[4]   Phase transition of XY model in heptagonal lattice [J].
Baek, S. K. ;
Minnhagen, P. ;
Kim, B. J. .
EPL, 2007, 79 (02)
[5]   Kosterlitz-Thouless transition of magnetic dipoles on the two-dimensional plane [J].
Baek, Seung Ki ;
Minnhagen, Petter ;
Kim, Beom Jun .
PHYSICAL REVIEW B, 2011, 83 (18)
[6]   DUAL QCD - A REVIEW [J].
BAKER, M ;
BALL, JS ;
ZACHARIASEN, F .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 209 (03) :73-127
[7]   Condensed Matter Theory of Dipolar Quantum Gases [J].
Baranov, M. A. ;
Dalmonte, M. ;
Pupillo, G. ;
Zoller, P. .
CHEMICAL REVIEWS, 2012, 112 (09) :5012-5061
[8]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[9]   Structural states in the 2D XY discrete model with dipole and exchange interactions [J].
Beloshapkin, VV ;
Muhin, VV .
PHYSICS LETTERS A, 1997, 233 (4-6) :471-475
[10]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493