Spectroscopic Investigation of Heavy Impurity Behaviour During ICRH with the JET ITER-Like Wall

被引:7
作者
Czarnecka, A. [1 ]
Bobkov, V. [2 ]
Coffey, I. H. [3 ]
Colas, L. [4 ]
Jacquet, P. [3 ]
Lawson, K. D. [3 ]
Lerche, E.
Maggi, C. [2 ]
Mayoral, M. -L. [5 ,7 ]
Puetterich, T. [2 ]
Van Eester, D. [6 ]
机构
[1] Assoc EURATOM IPPLM, Inst Plasma Phys & Laser Microfus, Hery 23 Str, PL-01497 Warsaw, Poland
[2] Max Planck Inst Plasmaphysik, EURATOM Assoc, D-85748 Garching, Germany
[3] Queens Univ, Dept Phys, Belfast, Antrim, North Ireland
[4] DCEA, IRFM, F-13108 St Paul Les Durance, France
[5] Euratom CCFE Assoc, Cu ham Sci Ctr, Abingdon 0X14 3DB, Oxon, England
[6] Assoc EURATOM Belgian State, ERM KMS, TEC Partner, Brussels, Belgium
[7] GEFDA Close Support Unit, Garching, Germany
[8] See Appendix F Romanelli, Proceedings 24th IAEA Fusion Energy Conf, San Diego, CA 2012 USA
来源
RADIOFREQUENCY POWER IN PLASMAS | 2014年 / 1580卷
关键词
ICRF heating; plasma impurities;
D O I
10.1063/1.4864529
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetically confined plasmas, such as those produced in the tokamak JET, contain measurable amounts of impurity ions produced during plasma-wall interactions (PWI) from the plasma-facing components and recessed wall areas. The impurities, including high- and mid-Z elements such as tungsten (W) from first wall tiles and nickel (Ni) from Inconel structure material, need to be controlled within tolerable limits, to ensure they do not significantly affect the performance of the plasma. This contribution focuses on documenting W and Ni impurity behavior during Ion Cyclotron Resonance Heating (ICRH) operation with the new ITER-Like Wall (ILW). Ni- and W-concentration were derived from VUV spectroscopy and the impact of applied power level, relative phasing of the antenna straps, plasma separatrix - antenna strap distance, IC resonance position, edge density and different plasma configuration, on the impurity release during ICRH are presented. For the same ICRH power the Ni and W concentration was lower with dipole phasing than in the case of -pi/2 phasing. The Ni concentration was found to increase with ICRH power and for the same NBI power level, ICRH-heated plasmas were characterized by two times higher Ni impurity content. Both W and Ni concentrations increased strongly with decreasing edge density which is equivalent to higher edge electron temperatures and more energetic ions responsible for the sputtering. In either case higher levels were found in ICRH than in NBI heated discharges. When the central plasma temperature was similar, ICRH on-axis heating resulted in higher core Ni impurity concentration in comparison to off-axis ICRH in L-mode. It was also found that the main core radiation during ICRH came from W.
引用
收藏
页码:227 / 230
页数:4
相关论文
共 13 条
[1]   ICRF specific plasma wall interactions in JET with the ITER-like wall [J].
Bobkov, Vl. ;
Arnoux, G. ;
Brezinsek, S. ;
Coenen, J. W. ;
Colas, L. ;
Clever, M. ;
Czarnecka, A. ;
Braun, F. ;
Dux, R. ;
Huber, A. ;
Jacquet, P. ;
Klepper, C. ;
Lerche, E. ;
Maggi, C. ;
Marcotte, F. ;
Maslov, M. ;
Matthews, G. ;
Mayoral, M. L. ;
McCormick, K. ;
Meigs, A. ;
Milanesio, D. ;
Monakhov, I. ;
Neu, R. ;
Noterdaeme, J. -M. ;
Puetterich, Th. ;
Rimini, F. ;
Van Rooj, G. ;
Sergienko, G. ;
Van Eester, D. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S160-S165
[2]   First tritium operation of ITER-prototype VUV spectroscopy on JET [J].
Coffey, IH ;
Barnsley, R .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10) :3737-3739
[3]   Impurity production from the ion cyclotron resonance heating antennas in JET [J].
Czarnecka, A. ;
Durodie, F. ;
Figueiredo, A. C. A. ;
Lawson, K. D. ;
Lerche, E. ;
Mayoral, M-L ;
Ongena, J. ;
Van Eester, D. ;
Zastrow, K-D ;
Bobkov, Vl V. ;
Coffey, I. H. ;
Colas, L. ;
Jacquet, P. ;
Monakhov, I. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (07)
[4]   Determination of metal impurity density,ΔZeff and dilution on JET by VUV emission spectroscopy [J].
Czarnecka, A. ;
Zastrow, K-D ;
Rzadkiewicz, J. ;
Coffey, I. H. ;
Lawson, K. D. ;
O'Mullane, M. G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (03)
[5]   ICRF-edge and surface interactions [J].
D'Ippolito, D. A. ;
Myra, J. R. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S1001-S1004
[6]   Plasma-wall interaction and plasma behaviour in the non-boronised all tungsten ASDEX Upgrade [J].
Dux, R. ;
Bobkov, V. ;
Herrmann, A. ;
Janzer, A. ;
Kallenbach, A. ;
Neu, R. ;
Mayer, M. ;
Mueller, H. W. ;
Pugno, R. ;
Puetterich, T. ;
Rohde, V. ;
Sips, A. C. C. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 :858-863
[7]   Characterisation of local ICRF heat loads on the JET ILW [J].
Jacquet, P. ;
Marcotte, F. ;
Colas, L. ;
Arnoux, G. ;
Bobkov, V. ;
Corre, Y. ;
Devaux, S. ;
Gardarein, J. -L. ;
Gauthier, E. ;
Graham, M. ;
Lerche, E. ;
Mayoral, M. -L. ;
Monakhov, I. ;
Rimini, F. ;
Sirinelli, A. ;
Van Eester, D. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S379-S383
[8]   RF sheath-enhanced beryllium sources at JET's ICRH antennas [J].
Klepper, C. C. ;
Jacquet, P. ;
Bobkov, V. ;
Colas, L. ;
Biewer, T. M. ;
Borodin, D. ;
Czarnecka, A. ;
Giroud, C. ;
Lerche, E. ;
Martin, V. ;
Mayoral, M. -L. ;
Rimini, F. ;
Sergienko, G. ;
Van Eester, D. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S594-S598
[9]   An absolute sensitivity calibration of the JET VUV SPRED spectrometer [J].
Lawson, K. D. ;
Coffey, I. H. ;
Zacks, J. ;
Stamp, M. F. .
JOURNAL OF INSTRUMENTATION, 2009, 4
[10]  
Maggi C. F., NUCL FUSION UNPUB