Experimental study of thin wall milling chatter stability nonlinear criterion

被引:17
作者
Wu, Shi [1 ]
Li, Rongyi [1 ]
Liu, Xianli [1 ]
Yang, Lin [1 ]
Zhu, Meiwen [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Mech & Power Engn, 52 Xuefu Rd, Harbin 150080, Peoples R China
来源
9TH INTERNATIONAL CONFERENCE ON DIGITAL ENTERPRISE TECHNOLOGY - INTELLIGENT MANUFACTURING IN THE KNOWLEDGE ECONOMY ERA | 2016年 / 56卷
基金
中国国家自然科学基金;
关键词
Thin part; Milling chatter; Nonlinear criterion; Lyapunov exponent; RECTANGULAR PLATE; DYNAMICS;
D O I
10.1016/j.procir.2016.10.075
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The nonlinear dynamic behavior of milling process has been accompanied by the entire cutting process. In. order to accurately determine and predict chatter stability of machining process, this article studied at both ends of the fixed thin part nonlinear criterion of milling chatter stability with experimental method. The experiment takes the vibration signal of thin part as the study object. And it analyses the vibration signal of different processing parameters based on the phase plane method, Poincare method and spectral analysis. Then, the relationship between the maximum Lyapunov exponent and the spindle speed and milling depth changes is discussed. Finally, taking the largest Lyapunov exponent as the criterion, the study determines the chatter stability domain of milling by using contour method. The comparative analysis is based on the milling chatter stability domain which obtained from the full discrete method. The experiments obtained the nonlinear stability criterion of aviation aluminium alloy 7075-T6 thin part. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:422 / 427
页数:6
相关论文
共 17 条
[1]  
David E., 2002, NONLINEAR DYNAM, V30, P103
[2]   A full-discretization method for prediction of milling stability [J].
Ding, Ye ;
Zhu, LiMin ;
Zhang, XiaoJian ;
Ding, Han .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2010, 50 (05) :502-509
[3]   Nonlinear response and nonsmooth bifurcations of an unbalanced machine-tool spindle-bearing system [J].
Gao, S. -H. ;
Long, X. -H. ;
Meng, G. .
NONLINEAR DYNAMICS, 2008, 54 (04) :365-377
[4]   Time series analysis in metal cutting: Chatter versus chatter-free cutting [J].
Gradisek, J ;
Govekar, E ;
Grabec, I .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1998, 12 (06) :839-854
[5]   A chaotic cutting process and determining optimal cutting parameter values using neural networks [J].
Gradisek, J ;
Govekar, E ;
Grabec, I .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 1996, 36 (10) :1161-1172
[6]  
KONG Fansen, 2013, J VIBRATION SHOCK, V30, P10
[7]  
Li ZQ, 2008, CHINESE J AERONAUT, V21, P169
[8]  
[刘志兵 Liu Zhibing], 2010, [兵工学报, Acta Armamentarii], V31, P84
[9]   Using chaos synchronization to estimate the largest Lyapunov exponent of nonsmooth systems [J].
Stefanski, A ;
Kapitaniak, T .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 4 (03) :207-215
[10]  
Stefanski A., 2003, P IUTAM S CHAOT DYN