Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data

被引:58
作者
Majozi, Nobuhle P. [1 ,2 ]
Salama, Mhd. Suhyb [2 ]
Bernard, Stewart [1 ]
Harper, David M. [3 ]
Habte, Mussie Ghirmai [2 ]
机构
[1] CSIR, ZA-0001 Pretoria, South Africa
[2] Univ Twente, Fac ITC, NL-7500 AA Enschede, Netherlands
[3] Univ Leicester, Dept Biol, Leicester LE1 7RH, Leics, England
关键词
Lake Naivasha; Euphotic depth; Diffuse attenuation coefficient; Remote sensing; MERIS; CHLOROPHYLL-A CONCENTRATIONS; APPARENT OPTICAL-PROPERTIES; ATMOSPHERIC CORRECTION; DIFFUSE-REFLECTANCE; HYPERTROPHIC LAKE; COASTAL WATERS; NATURAL-WATERS; BALTIC SEA; OCEAN; PIGMENTS;
D O I
10.1016/j.rse.2014.03.025
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Freshwater resources are deteriorating rapidly due to human activities and climate change. Remote sensing techniques have shown potential for monitoring water quality in shallow inland lakes, especially in data-scarce areas. The purpose of this study was to determine the spectral diffuse attenuation coefficient (K-d(lambda)) of the water column, in order to map the euphotic depth (Z(eu)) of Lake Naivasha, Kenya using the Medium Resolution Imaging Spectrometer (MERIS). Intensive in situ radiometric and limnological data collection was undertaken at Lake Naivasha. Atmospheric correction was done on the MERIS images using MERIS Neural Network algorithms, Case 2 Waters (C2R) and Eutrophic Lakes processors and the bright pixel atmospheric correction algorithm (BPAC). The Eutrophic Lakes processor gave the most accurate atmospherically corrected remote sensing reflectances at 490 nm compared to the other processors, with mean absolute percentage error (MAPE) of 47% and a root mean square error (RMSE) 43%, with BPAC giving negative reflectances in the blue spectral range. In situ Kd and Z(eu) models were calibrated and validated using above-and under-water radiometric measurements, and tested on the Neural Network atmospheric correction processed MERIS images. The Eutrophic Lakes estimates were the most accurate, with an RMSE of 0.26 m(-1) and MAPE of 18% for K-d(490) and RMSE of 0.17 m and MAPE of 14% for Z(eu). The Z(eu) maps produced from MERIS images clearly show the variation of euphotic depth both in space and time. These results indicate the suitability of MERIS to monitor euphotic depth and other water quality parameters of shallow inland water bodies. (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:178 / 189
页数:12
相关论文
共 50 条
[11]   Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS [J].
Matthews, Mark W. ;
Bernard, Stewart ;
Winter, Kevin .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (09) :2070-2087
[12]   Remote Sensing of Turbidity in Optically Shallow Waters Using Sentinel-2 MSI and PRISMA Satellite Data [J].
Katlane, Rim ;
Doxaran, David ;
Elkilani, Boubaker ;
Trabelsi, Chaima .
PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2024, 92 (04) :431-447
[13]   Mapping Bottom Type and Water Depth in Shallow Coastal Waters with Satellite Remote Sensing [J].
Vahtmaee, E. ;
Kutser, T. .
JOURNAL OF COASTAL RESEARCH, 2007, :185-189
[14]   Semi-analytical prediction of Secchi depth transparency in Lake Kasumigaura using MERIS data [J].
Takehiko Fukushima ;
Bunkei Matsushita ;
Wei Yang ;
Lalu Muhamad Jaelani .
Limnology, 2018, 19 :89-100
[15]   Estimating the Water Turbidity in the Selenga River and Adjacent Waters of Lake Baikal Using Remote Sensing Data [J].
M. K. Tarasov ;
O. V. Tutubalina .
Izvestiya, Atmospheric and Oceanic Physics, 2018, 54 :1353-1362
[16]   Estimating the Water Turbidity in the Selenga River and Adjacent Waters of Lake Baikal Using Remote Sensing Data [J].
Tarasov, M. K. ;
Tutubalina, O. V. .
IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2018, 54 (09) :1353-1362
[17]   Remote sensing of water quality in an Australian tropical freshwater impoundment using matrix inversion and MERIS images [J].
Campbell, Glenn ;
Phinn, Stuart R. ;
Dekker, Arnold G. ;
Brando, Vittorio E. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (09) :2402-2414
[18]   Evaluation of the Influence of Aquatic Plants and Lake Bottom on the Remote-Sensing Reflectance of Optically Shallow Waters [J].
Zhang, Yuanzhi ;
Duan, Hongtao ;
Xi, Hongyan ;
Huang, Zhaojun ;
Tsou, JinYeu ;
Jiang, Tingchen ;
Liang, X. San .
ATMOSPHERE-OCEAN, 2018, 56 (04) :277-288
[19]   Remote sensing of harmful algal events in optically complex waters using regionally specific neural network-based algorithms for MERIS data [J].
Gonzalez Vilas, L. ;
Castro Fernandez, M. ;
Spyrakos, E. ;
Torres Palenzuela, J. .
FIRST INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2013), 2013, 8795
[20]   Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake [J].
Zheng, Zhubin ;
Ren, Jingli ;
Li, Yunmei ;
Huang, Chuangchun ;
Liu, Ge ;
Du, Chenggong ;
Lyu, Heng .
SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 573 :39-54