An improved global exponential stability criterion for delayed neural networks
被引:8
作者:
Liu, Kaiyu
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Liu, Kaiyu
[1
]
Zhang, Hongqiang
论文数: 0引用数: 0
h-index: 0
机构:
Changsha Univ Sci & Technol, Coll Math & Comput Sci, Changsha 410076, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Zhang, Hongqiang
[2
]
机构:
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Coll Math & Comput Sci, Changsha 410076, Hunan, Peoples R China
Global exponential stability;
Neural networks;
Linear matrix inequality;
Halanay inequality;
Bellman inequality;
TIME-VARYING DELAYS;
ASYMPTOTIC STABILITY;
DYNAMICS;
D O I:
10.1016/j.nonrwa.2008.04.011
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Based on Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique, a criterion is derived to guarantee the global exponential stability of the class of delayed neural networks with time-varying delays, which generalizes and improves previous results. Numerical examples demonstrate the effectiveness of the criterion. (c) 2008 Elsevier Ltd. All rights reserved.