ON G-SETS AND ISOSPECTRALITY

被引:4
作者
Parzanchevski, Ori [1 ]
机构
[1] Hebrew Univ Jerusalem, IL-91905 Jerusalem, Israel
关键词
isospectrality; laplacian; G-sets; Sunada; COVERINGS; GRAPHS;
D O I
10.5802/aif.2831
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study finite G-sets and their tensor product with Riemannian manifolds, and obtain results on isospectral quotients and covers. In particular, we show the following: If M is a compact connected Riemannian manifold (or orbifold) whose fundamental group has a finite non-cyclic quotient, then M has isospectral non-isometric covers.
引用
收藏
页码:2307 / 2329
页数:23
相关论文
共 24 条
[1]   The isospectral fruits of representation theory: quantum graphs and drums [J].
Band, Ram ;
Parzanchevski, Ori ;
Ben-Shach, Gilad .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (17)
[2]   TRANSPLANTATION AND ISOSPECTRALITY .1. [J].
BERARD, P .
MATHEMATISCHE ANNALEN, 1992, 292 (03) :547-559
[3]  
Brooks R., 1996, ISR MATH C P, V11
[4]   ISOSPECTRAL RIEMANN SURFACES [J].
BUSER, P .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (02) :167-192
[5]   DRUMS THAT SOUND THE SAME [J].
CHAPMAN, SJ .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (02) :124-138
[6]   ISOSPECTRAL DEFORMATIONS .2. TRACE FORMULAS, METRICS, AND POTENTIALS [J].
DETURCK, DM ;
GORDON, CS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (08) :1067-1095
[7]  
DiPasquale M., 2009, ROSE HULMAN UNDERGRA, V10
[8]  
Doyle P., 2011, ARXIV11034372
[9]  
GASSMANN F., 1926, MATH Z, V25, P124
[10]  
GORDON C., 1992, AM MATH SOC, V27