Highly Permeable Polyheteroarylenes for Membrane Gas Separation: Recent Trends in Chemical Structure Design

被引:12
作者
Alent'ev, A. Yu. [1 ]
Ryzhikh, V. E. [1 ]
Belov, N. A. [1 ]
机构
[1] Russian Acad Sci, Topchiev Inst Petrochem Synth, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
TRIPTYCENE-BASED POLYIMIDE; STRUCTURE-PROPERTY RELATIONSHIPS; INCORPORATING TROGERS BASE; FREE-VOLUME DISTRIBUTION; DI-TERT-BUTYL; INTRINSIC MICROPOROSITY; HIGH-PERFORMANCE; TRANSPORT PROPERTIES; PERMEATION PROPERTIES; MOLECULAR-SIEVE;
D O I
10.1134/S1811238220020010
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Progress in membrane gas separation is impossible without the synthesis of new polymers with improved gas-transport and gas-separation characteristics. The most promising polymeric membrane materials with the advantageous combination of permeability and selectivity, which form the 2008 and 2015 Robeson "upper bounds," are polyheteroarylenes, among which are ladder polybenzodioxanes, polymers of intrinsic microporosity (PIM), polyimides, polyamides, and polyisathines. Their specific feature is the presence of moieties in the chemical structure that in any way contribute to the loosened packing of polymer chains and the increase in gas-permeability coefficients. Among such macromolecular design elements are groups with main chain kinks or bulky substituents increasing the rotation barriers and rigidity of macrochains. A high gas permeability of the polyheteroarylenes under consideration is commonly combined with an increased selectivity for many gas pairs (e.g., O-2/N-2, CO2/CH4) primarily associated with a high diffusion selectivity, which suggests their chain packing order and makes it possible to call them polymeric molecular sieves.
引用
收藏
页码:238 / 258
页数:21
相关论文
共 81 条
[31]   Energy-Efficient Hydrogen Separation by AB-Type Ladder-Polymer Molecular Sieves [J].
Ghanem, Bader S. ;
Swaidan, Raja ;
Ma, Xiaohua ;
Litwiller, Eric ;
Pinnau, Ingo .
ADVANCED MATERIALS, 2014, 26 (39) :6696-6700
[32]   Ultra-Microporous Triptycene-based Polyimide Membranes for High-Performance Gas Separation [J].
Ghanem, Bader S. ;
Swaidan, Raja ;
Litwiller, Eric ;
Pinnau, Ingo .
ADVANCED MATERIALS, 2014, 26 (22) :3688-3692
[33]   Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides [J].
Ghanem, Bader S. ;
McKeown, Neil B. ;
Budd, Peter M. ;
Al-Harbi, Nasser M. ;
Fritsch, Detlev ;
Heinrich, Kathleen ;
Starannikova, Ludmila ;
Tokarev, Andrei ;
Yampolskii, Yuri .
MACROMOLECULES, 2009, 42 (20) :7881-7888
[34]  
Ghosh B. D., 2021, UB IMIDIC POLYM GREE
[35]   9-Alkylated fluorene-based poly(ether imide)s and their gas transport properties [J].
Ghosh, Sipra ;
Banerjee, Susanta .
JOURNAL OF MEMBRANE SCIENCE, 2016, 497 :172-182
[36]   Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1) [J].
Heuchel, Matthias ;
Fritsch, Detlev ;
Budd, Peter M. ;
McKeown, Neil B. ;
Hofmann, Dieter .
JOURNAL OF MEMBRANE SCIENCE, 2008, 318 (1-2) :84-99
[37]  
Ismail A.F., 2015, Gas Separation Membranes: Polymeric and Inorganic, V10
[38]   Polyimides Based on the Diethyltoluenediamine Isomer Mixture: Synthesis and Gas Transport Properties [J].
Kuznetsov, A. A. ;
Tsegelskaya, A. Yu ;
Orlova, A. M. ;
Belo, N. A. ;
Chirkov, S., V ;
Nikiforov, R. Yu ;
Alentiev, A. Yu .
MEMBRANES AND MEMBRANE TECHNOLOGIES, 2019, 1 (05) :316-322
[39]   Effect of Bulky and Hydroxyl Groups on Gas Separation Performance of Polyimide Membranes [J].
Lee, Bo Mi ;
Kim, Deuk Ju ;
Nam, Sang Yong .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (03) :2351-2355
[40]   Enhancing the Gas Permeability of Troger's Base Derived Polyimides of Intrinsic Microporosity [J].
Lee, Michael ;
Bezzu, C. Grazia ;
Carta, Mariolino ;
Bernardo, Paola ;
Clarizia, Gabriele ;
Jansen, Johannes C. ;
McKeown, Neil B. .
MACROMOLECULES, 2016, 49 (11) :4147-4154