Deriving surface-energy anisotropy for phenomenological phase-field models of solidification

被引:38
|
作者
Majaniemi, Sami [1 ,2 ]
Provatas, Nikolas [1 ]
机构
[1] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada
[2] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 01期
关键词
density functional theory; free energy; liquid theory; solidification; surface energy; SOLID-LIQUID INTERFACE; GINZBURG-LANDAU THEORY; MOLECULAR THEORY;
D O I
10.1103/PhysRevE.79.011607
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The free energy of classical density functional theory of an inhomogeneous fluid at coexistence with its solid is used to describe solidification in two-dimensional hexagonal crystals. A coarse-graining formalism from the microscopic density functional level to the macroscopic single order parameter level is provided. An analytic expression for the surface energy and the angular dependence of its anisotropy is derived and its coefficients related to the two-point direct correlation function of the liquid phase at coexistence.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Phase-field models for eutectic solidification
    Lewis, D
    Pusztai, T
    Gránásy, L
    Warren, J
    Boettinger, W
    JOM, 2004, 56 (04) : 34 - 39
  • [2] Phase-field models for eutectic solidification
    Daniel Lewis
    James Warren
    William Boettinger
    Tamás Pusztai
    László Gránásy
    JOM, 2004, 56 : 34 - 39
  • [3] Concepts of modeling surface energy anisotropy in phase-field approaches
    Tschukin, Oleg
    Silberzahn, Alexander
    Selzer, Michael
    Amos, Prince G. K.
    Schneider, Daniel
    Nestler, Britta
    GEOTHERMAL ENERGY, 2017, 5 (01):
  • [4] Concepts of modeling surface energy anisotropy in phase-field approaches
    Oleg Tschukin
    Alexander Silberzahn
    Michael Selzer
    Prince G. K. Amos
    Daniel Schneider
    Britta Nestler
    Geothermal Energy, 5
  • [5] Comparative study of different anisotropy and potential formulations of phase-field models for dendritic solidification
    Kundin, Julia
    Steinbach, Ingo
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 170
  • [6] RECENT DEVELOPMENTS IN PHASE-FIELD MODELS OF SOLIDIFICATION
    WHEELER, AA
    AHMAD, NA
    BOETTINGER, WJ
    BRAUN, RJ
    MCFADDEN, GB
    MURRAY, BT
    MICROGRAVITY SCIENCES: RESULTS AND ANALYSIS OF RECENT SPACEFLIGHTS, 1995, 16 (07): : 163 - 172
  • [7] MORPHOLOGICAL INSTABILITY IN PHASE-FIELD MODELS OF SOLIDIFICATION
    BRAUN, RJ
    MCFADDEN, GB
    CORIELL, SR
    PHYSICAL REVIEW E, 1994, 49 (05): : 4336 - 4352
  • [8] Phase-Field Models for Solidification and Crystal Growth
    Ohno, Munekazu
    INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION, 2013, 30 (01): : 24 - 29
  • [9] SURFACE-ENERGY ANISOTROPY OF TUNGSTEN
    KUMAR, R
    GRENGA, HE
    SURFACE SCIENCE, 1976, 59 (02) : 612 - 618
  • [10] Thermodynamically consistent phase-field models of solidification processes
    Charach, C
    Fife, PC
    MOVING BOUNDARIES IV: COMPUTATIONAL MODELLING OF FREE AND MOVING BOUNDARY PROBLEMS, 1997, : 27 - 36