Suboptimal and optimal convergence in mixed finite element methods

被引:21
作者
Demlow, A [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
mixed finite element methods; suboptimal convergence; optimal convergence;
D O I
10.1137/S0036142900376900
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An elliptic partial differential equation may be formulated in different but equivalent ways, and the mixed finite element methods derived from these formulations have different properties. We give general error estimates for two such methods, which are always optimal for the Raviart-Thomas elements, but which are suboptimal for the Brezzi-Douglas-Marini elements in one of the methods. Computational experiments show that this suboptimal estimate is sharp.
引用
收藏
页码:1938 / 1953
页数:16
相关论文
共 14 条
[1]   The maximum angle condition for mixed and nonconforming elements:: Application to the Stokes equations [J].
Acosta, G ;
Duránn, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :18-36
[2]  
[Anonymous], 1982, MATH APPL COMPUT
[3]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[4]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[5]   BDM MIXED METHODS FOR A NONLINEAR ELLIPTIC PROBLEM [J].
CHEN, ZX .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 53 (02) :207-223
[6]   Expanded mixed finite element methods for quasilinear second order elliptic problems, II [J].
Chen, ZX .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (04) :501-520
[7]  
Chen ZX, 1998, ESAIM-MATH MODEL NUM, V32, P479
[8]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9
[9]  
Dur┬u├n R., 1988, RAIRO ANAL NUMER, V22, P371
[10]  
FALK RS, 1980, RAIRO-ANAL NUMER-NUM, V14, P249