Sustainable High Yield Route to Cellulose Nanocrystals from Bacterial Cellulose

被引:49
作者
Paakkonen, Timo [1 ]
Spiliopoulos, Panagiotis [1 ]
Nonappa [2 ]
Kontturi, Katri S. [3 ,4 ]
Penttila, Paavo [1 ]
Viljanen, Mira [5 ]
Svedstrom, Kirsi [5 ]
Kontturi, Eero [1 ]
机构
[1] Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, POB 16300, Aalto 00076, Finland
[2] Aalto Univ, Sch Sci, Dept Appl Phys, POB 15100, Aalto 00076, Finland
[3] VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland
[4] Univ Vienna, Inst Mat Chem & Res, Polymer & Composites Engn PaCE Grp, Wahringerstr 42, A-1090 Vienna, Austria
[5] Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Colloidal dispersion; Gaseous acid; Hydrolysis; Nanocellulose; TEMPO-oxidation; ACID; EXTRACTION; OXIDATION; VAPOR;
D O I
10.1021/acssuschemeng.9b04005
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
HCl gas hydrolysis of a bacterial cellulose (BC) aerogel followed by 2,2,6,6-tetramethylpiperidine-1-oxyl radical-mediated oxidation was used to produce hydrolyzed BC with carboxylate groups, which subsequently disintegrated into a stable dispersion of cellulose nanocrystals (CNCs). The degree of polymerization was successfully reduced from 2160 to 220 with a CNC yield of >80%.
引用
收藏
页码:14384 / 14388
页数:9
相关论文
共 33 条
[1]   Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood [J].
Abushammala, Hatem ;
Krossing, Ingo ;
Laborie, Marie-Pierre .
CARBOHYDRATE POLYMERS, 2015, 134 :609-616
[2]   Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids [J].
Chen, Liheng ;
Zhu, J. Y. ;
Baez, Carlos ;
Kitin, Peter ;
Elder, Thomas .
GREEN CHEMISTRY, 2016, 18 (13) :3835-3843
[3]   Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose [J].
Dong, XM ;
Revol, JF ;
Gray, DG .
CELLULOSE, 1998, 5 (01) :19-32
[4]   Stiff as a Board: Perspectives on the Crystalline Modulus of Cellulose [J].
Eichhorn, Stephen J. .
ACS MACRO LETTERS, 2012, 1 (11) :1237-1239
[5]   Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis [J].
Espinosa, Sandra Camarero ;
Kuhnt, Tobias ;
Foster, E. Johan ;
Weder, Christoph .
BIOMACROMOLECULES, 2013, 14 (04) :1223-1230
[6]   Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides [J].
Fang, Wenwen ;
Arola, Suvi ;
Malho, Jani-Markus ;
Kontturi, Eero ;
Linder, Markus B. ;
Laaksonen, Paivi .
BIOMACROMOLECULES, 2016, 17 (04) :1458-1465
[7]   Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications [J].
Habibi, Youssef ;
Lucia, Lucian A. ;
Rojas, Orlando J. .
CHEMICAL REVIEWS, 2010, 110 (06) :3479-3500
[8]   The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type [J].
Hayashi, N ;
Sugiyama, J ;
Okano, T ;
Ishihara, M .
CARBOHYDRATE RESEARCH, 1997, 305 (02) :261-269
[9]   Green Preparation of Cellulose Nanocrystal and Its Application [J].
Kang, Xingya ;
Kuga, Shigenori ;
Wang, Chao ;
Zhao, Yang ;
Wu, Min ;
Huang, Yong .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (03) :2954-2960
[10]   The Development of Chiral Nematic Mesoporous Materials [J].
Kelly, Joel A. ;
Giese, Michael ;
Shopsowitz, Kevin E. ;
Hamad, Wadood Y. ;
MacLachlan, Mark J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (04) :1088-1096