Parameter inference of general nonlinear dynamical models of gene regulatory networks from small and noisy time series

被引:9
|
作者
Berrones, Arturo [1 ]
Jimenez, Edgar [2 ]
Aracelia Alcorta-Garcia, Maria [2 ]
Almaguer, F-Javier [2 ]
Pena, Brenda [1 ]
机构
[1] Univ Autonoma Nuevo Leon, Posgrado Ingn Sistemas, Fac Ingn Mecan & Elect, San Nicolas De Los Garza 66455, NL, Mexico
[2] Univ Autonoma Nuevo Leon, Posgrado Ingn Sistemas, Fac Ciencias Fis Matemat, San Nicolas De Los Garza 66455, NL, Mexico
关键词
CTRNN; Genetic regulatory networks; Genetic expression time series; Bayesian inference; DIFFERENTIAL EVOLUTION; ALGORITHMS;
D O I
10.1016/j.neucom.2015.10.095
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new inference approach to general dynamic models of gene regulatory networks (GRN) is introduced. The methodology is based on a Maximum a Posteriori (MAP) smoothing of time series data from which mean field variables of the dynamics are estimated. The interactions are modeled by a Continuous Time Recurrent Neural Network (CTRNN). Parameter estimation of the CTRNN is performed without the need to numerically solve the system of nonlinear differential equations. The method is tested on a benchmark of real genetic networks and displays superior performance, in terms of the mean squared error of the expression dynamics, compared to other formalisms. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:555 / 563
页数:9
相关论文
共 50 条
  • [41] Noisy time series prediction using recurrent neural networks and grammatical inference
    Giles, CL
    Lawrence, S
    Tsoi, AC
    MACHINE LEARNING, 2001, 44 (1-2) : 161 - 183
  • [42] Noisy Time Series Prediction using Recurrent Neural Networks and Grammatical Inference
    C. Lee Giles
    Steve Lawrence
    Ah Chung Tsoi
    Machine Learning, 2001, 44 : 161 - 183
  • [43] Reconstruction of nonlinear flows from noisy time series
    Juanjuan Wang
    Zishuo Yan
    Lili Gui
    Kun Xu
    Yueheng Lan
    Nonlinear Dynamics, 2022, 108 : 3887 - 3902
  • [44] Reconstruction of nonlinear flows from noisy time series
    Wang, Juanjuan
    Yan, Zishuo
    Gui, Lili
    Xu, Kun
    Lan, Yueheng
    NONLINEAR DYNAMICS, 2022, 108 (04) : 3887 - 3902
  • [45] Combining tree-based and dynamical systems for the inference of gene regulatory networks
    Van Anh Huynh-Thu
    Sanguinetti, Guido
    BIOINFORMATICS, 2015, 31 (10) : 1614 - 1622
  • [46] Statistical inference for conditional quantiles in nonlinear time series models
    So, Mike K. P.
    Chung, Ray S. W.
    JOURNAL OF ECONOMETRICS, 2015, 189 (02) : 457 - 472
  • [47] Inference on via generalized spectrum and nonlinear time series models
    Hong, YM
    Lee, TH
    REVIEW OF ECONOMICS AND STATISTICS, 2003, 85 (04) : 1048 - 1062
  • [48] Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series
    Rasmussen, David A.
    Ratmann, Oliver
    Koelle, Katia
    PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (08)
  • [49] Parameter identification of dynamical systems from time series
    Yu, Wenwu
    Chen, Guanrong
    Cao, Jinde
    Lu, Jinhu
    Parlitz, Ulrich
    PHYSICAL REVIEW E, 2007, 75 (06):
  • [50] Dynamical parameter identification from a scalar time series
    Yu, Dongchuan
    Liu, Fang
    CHAOS, 2008, 18 (04)