Parameter inference of general nonlinear dynamical models of gene regulatory networks from small and noisy time series

被引:9
|
作者
Berrones, Arturo [1 ]
Jimenez, Edgar [2 ]
Aracelia Alcorta-Garcia, Maria [2 ]
Almaguer, F-Javier [2 ]
Pena, Brenda [1 ]
机构
[1] Univ Autonoma Nuevo Leon, Posgrado Ingn Sistemas, Fac Ingn Mecan & Elect, San Nicolas De Los Garza 66455, NL, Mexico
[2] Univ Autonoma Nuevo Leon, Posgrado Ingn Sistemas, Fac Ciencias Fis Matemat, San Nicolas De Los Garza 66455, NL, Mexico
关键词
CTRNN; Genetic regulatory networks; Genetic expression time series; Bayesian inference; DIFFERENTIAL EVOLUTION; ALGORITHMS;
D O I
10.1016/j.neucom.2015.10.095
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new inference approach to general dynamic models of gene regulatory networks (GRN) is introduced. The methodology is based on a Maximum a Posteriori (MAP) smoothing of time series data from which mean field variables of the dynamics are estimated. The interactions are modeled by a Continuous Time Recurrent Neural Network (CTRNN). Parameter estimation of the CTRNN is performed without the need to numerically solve the system of nonlinear differential equations. The method is tested on a benchmark of real genetic networks and displays superior performance, in terms of the mean squared error of the expression dynamics, compared to other formalisms. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:555 / 563
页数:9
相关论文
共 50 条
  • [21] A Dynamical method to estimate gene regulatory networks using time-series data
    Tu, Chengyi
    COMPLEXITY, 2015, 21 (02) : 134 - 144
  • [22] Noisy attractors and ergodic sets in models of gene regulatory networks
    Ribeiro, Andre S.
    Kauffman, Stuart A.
    JOURNAL OF THEORETICAL BIOLOGY, 2007, 247 (04) : 743 - 755
  • [23] INFERENCE OF GENE REGULATORY NETWORKS BY EXTENDED KALMAN FILTERING USING GENE EXPRESSION TIME SERIES DATA
    Fouladi, Ramouna
    Fatemizadeh, Emad
    Arab, S. Shahriar
    BIOINFORMATICS: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOINFORMATICS MODELS, METHODS AND ALGORITHMS, 2012, : 150 - 155
  • [24] PALLAS: Penalized mAximum LikeLihood and pArticle Swarms for Inference of Gene Regulatory Networks From Time Series Data
    Tan, Yukun
    Lima Neto, Fernando B.
    Neto, Ulisses Braga
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (03) : 1807 - 1816
  • [25] Bayesian inference for nonlinear structural time series models
    Hall, Jamie
    Pitt, Michael K.
    Kohn, Robert
    JOURNAL OF ECONOMETRICS, 2014, 179 (02) : 99 - 111
  • [26] NONLINEAR PREDICTION OF NOISY TIME-SERIES WITH FEEDFORWARD NETWORKS
    GENCAY, R
    PHYSICS LETTERS A, 1994, 187 (5-6) : 397 - 403
  • [27] Identifying topology of general dynamical networks from noisy data
    Zhan, Choujun
    Li, Benjamin Yee Shing
    Yeung, Lam Fat
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [28] dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data
    Van Anh Huynh-Thu
    Geurts, Pierre
    SCIENTIFIC REPORTS, 2018, 8
  • [29] dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data
    Vân Anh Huynh-Thu
    Pierre Geurts
    Scientific Reports, 8
  • [30] Improved Fuzzy Cognitive Maps for Gene Regulatory Networks Inference Based on Time Series Data
    Emadi, Marzieh
    Boroujeni, Farsad Zamani
    Pirgazi, Jamshid
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (06) : 1816 - 1829