Flow dynamics in the short asymmetric Taylor-Couette cavities at low Reynolds numbers

被引:5
|
作者
Tuliszka-Sznitko, E. [1 ]
机构
[1] Poznan Univ Tech, Inst Thermal Engn, Ul Piotrowo3, PL-60965 Poznan, Poland
关键词
Taylor-Couette flow; Bifurcation phenomena; The modulated rotating wave; DNS; BIFURCATION PHENOMENA; CENTRIFUGAL INSTABILITY; ANOMALOUS MODES; VISCOUS-FLUID; STEADY FLOWS; CHAOS;
D O I
10.1016/j.ijheatfluidflow.2020.108678
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper reports on the numerical investigations of Taylor-Couette flow of radius ratio eta = 0.25-0.6 performed at low Reynolds numbers Re = 100-200. The inner cylinder and the bottom end-wall rotate, while the outer cylinder and the top end-wall are held fixed. A fully 3D DNS code based on the spectral Chebyshev - Fourier approximation is used. This study is complementary to those of Mullin and Blohm (Phys. of Fluids 2001, vol 13, 136-140) and Lopez et al. (J. Fluid Mech. 2004, vol 501, 327-354) where investigations have been performed for radius ratio 0.5. The 1-cell and 3-cell structures found by these authors are shown to exist for a wide range of radius ratios, and the transition processes between them are qualitatively similar. These structures show hysteresis, disappearing at saddle-node bifurcations which connect at a cusp point in the (Re, Gamma) plane. This cusp exists for the entire range of 0.1 < eta < 0.75, and it traces out a parabolic curve in the (Re, Gamma) plane, reaching a minimum Re at eta = 0.375. The detailed 3D DNS computations provide a lot of new information about such phenomena as the modulated rotating wave, the period doubling cascade and homoclinic collision. The results show that the period doubling bifurcation is important in the flow when the radius ratio is close to eta = 0.375.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Mixing characteristics in a conical Taylor-Couette flow system at low Reynolds numbers
    Ohmura, N
    Noui-Mehidi, MN
    Sasaki, K
    Kitajima, K
    Kataoka, K
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2004, 37 (04) : 546 - 550
  • [2] Resistance law for taylor-couette turbulent flow at very high reynolds numbers
    A. M. Balonishnikov
    Technical Physics, 2003, 48 : 270 - 271
  • [3] Resistance law for Taylor-Couette turbulent flow at very high Reynolds numbers
    Balonishnikov, AM
    TECHNICAL PHYSICS, 2003, 48 (02) : 270 - 271
  • [4] UNUSUAL TIME-DEPENDENT PHENOMENA IN TAYLOR-COUETTE FLOW AT MODERATELY LOW REYNOLDS-NUMBERS
    MULLIN, T
    CLIFFE, KA
    PFISTER, G
    PHYSICAL REVIEW LETTERS, 1987, 58 (21) : 2212 - 2215
  • [5] The stratorotational instability of Taylor-Couette flows with moderate Reynolds numbers
    Ruediger, G.
    Seelig, T.
    Schultz, M.
    Gellert, M.
    Egbers, Ch.
    Harlander, U.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2017, 111 (06): : 429 - 447
  • [6] HOMOCLINIC DYNAMICS IN TAYLOR-COUETTE FLOW
    OHLE, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (05): : T398 - T399
  • [7] Experimental investigation of Taylor-Couette-Poiseuille flow at low Taylor and Reynolds numbers
    Kristiawan, Magdalena
    El Hassan, Mouhammad
    El Faye, Alioune
    Sobolik, Vaclav
    PLOS ONE, 2019, 14 (04):
  • [8] Stratified Taylor-Couette flow: nonlinear dynamics
    Lopez, Juan M.
    Marques, Francisco
    JOURNAL OF FLUID MECHANICS, 2021, 930 : 269 - 299
  • [9] Air cavities at the inner cylinder of turbulent Taylor-Couette flow
    Verschoof, Ruben A.
    Bakhuis, Dennis
    Bullee, Pim A.
    Huisman, Sander G.
    Sun, Chao
    Lohse, Detlef
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2018, 105 : 264 - 273
  • [10] Turbulent Taylor–Couette Flow at Large Reynolds Numbers*
    Babkin V.A.
    Journal of Engineering Physics and Thermophysics, 2016, 89 (5) : 1247 - 1254