Extended scaling and Paschen law for micro-sized radiofrequency plasma breakdown

被引:43
作者
Lee, Min Uk [1 ]
Lee, Jimo [1 ]
Lee, Jae Koo [1 ]
Yun, Gunsu S. [1 ,2 ,3 ]
机构
[1] Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol, Dept Phys, Pohang 37673, South Korea
[3] Max Planck POSTECH, Ctr Attosecond Sci, Korea Res Initiat MPK, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
microplasma; breakdown; transition; scaling; Paschen's law; PIC simulation; fluid simulation; SIMULATIONS; DISCHARGES; EMISSION; PARTICLE; GASES;
D O I
10.1088/1361-6595/aa52a8
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The single particle motion analysis and particle-in-cell merged with Monte Carlo collision (PIC/MCC) simulations are compared to explain substantial breakdown voltage reduction for helium microwave discharge above a critical frequency corresponding to the transition from the drift-dominant to the diffusion-dominant electron loss regime. The single particle analysis suggests that the transition frequency is proportional to the product of p(-m) and d(-(m+1)) where p is the neutral gas pressure, d is the gap distance, and m is a numerical parameter, which is confirmed by the PIC simulation. In the low-frequency or drift-dominant regime, i. e., gamma-regime, the secondary electron emission induced by ion drift motion is the key parameter for determining the breakdown voltage. The fluid analysis including the secondary emission coefficient, gamma, induces the extended Paschen law that implies the breakdown voltage is determined by pd, f/p, gamma, and d/R where f is the frequency of the radio or microwave frequency source, and R is the diameter of electrode. The extended Paschen law reproduces the same scaling law for the transition frequency and is confirmed by the independent PIC and fluid simulations.
引用
收藏
页数:7
相关论文
共 33 条
[1]   PARTICLE-IN-CELL CHARGED-PARTICLE SIMULATIONS, PLUS MONTE-CARLO COLLISIONS WITH NEUTRAL ATOMS, PIC-MCC [J].
BIRDSALL, CK .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1991, 19 (02) :65-85
[2]  
BOYLE WS, 1955, PHYS REV, V97, P255, DOI 10.1103/PhysRev.97.255
[3]   Microwave-excited atmospheric-pressure microplasmas based on a coaxial transmission line resonator [J].
Choi, J. ;
Iza, F. ;
Do, H. J. ;
Lee, J. K. ;
Cho, M. H. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2009, 18 (02)
[4]   Electron emission in intense electric fields [J].
Fowler, RH ;
Nordheim, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1928, 119 (781) :173-181
[5]   Microscale gas breakdown: ion-enhanced field emission and the modified Paschen's curve [J].
Go, D. B. ;
Venkattraman, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (50)
[6]   Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas [J].
Hemke, T. ;
Eremin, D. ;
Mussenbrock, T. ;
Derzsi, A. ;
Donko, Z. ;
Dittmann, K. ;
Meichsner, J. ;
Schulze, J. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2013, 22 (01)
[7]   BREAKDOWN OF A GAS AT MICROWAVE FREQUENCIES [J].
HERLIN, MA ;
BROWN, SC .
PHYSICAL REVIEW, 1948, 74 (03) :291-296
[8]   THERMIONIC EMISSION [J].
HERRING, C ;
NICHOLS, MH .
REVIEWS OF MODERN PHYSICS, 1949, 21 (02) :185-270
[9]   Comparison of fluid and particle-in-cell simulations on atmospheric pressure helium microdischarges [J].
Hong, Y. J. ;
Yoon, M. ;
Iza, F. ;
Kim, G. C. ;
Lee, J. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (24)
[10]   Low-power microwave plasma source based on a microstrip split-ring resonator [J].
Iza, F ;
Hopwood, JA .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2003, 31 (04) :782-787