The regularized 3D Boussinesq equations with fractional Laplacian and no diffusion

被引:26
作者
Bessaih, H. [1 ]
Ferrario, B. [2 ]
机构
[1] Univ Wyoming, Dept Math, Dept 3036, 1000 East Univ Ave, Laramie, WY 82071 USA
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
基金
美国国家科学基金会;
关键词
Boussinesq equations; Leray-alpha models; Fractional dissipation; Transport equation; Commutators; GLOBAL WELL-POSEDNESS; EXISTENCE; VISCOSITY; SYSTEM; EULER;
D O I
10.1016/j.jde.2016.10.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the 3D regularized Boussinesq equations. The velocity equation is regularized a la Leray through a smoothing kernel of order alpha in the nonlinear term and a beta-fractional Laplacian; we consider the critical case alpha + beta =5/4 and we assume 1/2< beta <5/4. The temperature equation is a pure transport equation, where the transport velocity is regularized through the same smoothing kernel of order alpha. We prove global well posedness when the initial velocity is in H-r and the initial temperature is in Hr-beta for r > max(2 beta, beta + 1). This regularity is enough to prove uniqueness of solutions. We also prove a continuous dependence of solutions on the initial conditions. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1822 / 1849
页数:28
相关论文
共 28 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]   ON THE GLOBAL REGULARITY OF AXISYMMETRIC NAVIER-STOKES-BOUSSINESQ SYSTEM [J].
Abidi, Hammadi ;
Hmidi, Taoufik ;
Keraani, Sahbi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) :737-756
[3]   GLOBAL REGULARITY FOR A SLIGHTLY SUPERCRITICAL HYPERDISSIPATIVE NAVIER-STOKES SYSTEM [J].
Barbato, David ;
Morandin, Francesco ;
Romito, Marco .
ANALYSIS & PDE, 2014, 7 (08) :2009-2027
[4]   On a stochastic Leray-α model of Euler equations [J].
Barbato, David ;
Bessaih, Hakima ;
Ferrario, Benedetta .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) :199-219
[5]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[6]  
Brezis H., 1980, COMMUN PART DIFF EQ, V5, P773, DOI 10.1080/03605308008820154
[7]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[8]   Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces [J].
Danchin, Raphael ;
Paicu, Marius .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) :1444-1460
[9]   Global Well-Posedness Issues for the Inviscid Boussinesq System with Yudovich's Type Data [J].
Danchin, Raphael ;
Paicu, Marius .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (01) :1-14
[10]   A note on regularity criterion for the 3D Boussinesq system with zero thermal conductivity [J].
Geng, Jinbo ;
Fan, Jishan .
APPLIED MATHEMATICS LETTERS, 2012, 25 (01) :63-66