Ridge estimator in singular design with application to age-period-cohort analysis of disease rates

被引:94
作者
Fu, WJJ [1 ]
机构
[1] Michigan State Univ, Dept Epidemiol, E Lansing, MI 48823 USA
关键词
collinearity; identifiability; intrinsic estimator; shrinkage;
D O I
10.1080/03610920008832483
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ridge estimator of a singular design is considered for linear and generalized linear models. Ridge penalty helps determine a unique estimator in singular design. The tuning parameter of the penalty is selected via generalized cross-validation (GCV) method. It is proven that the ridge estimator lies in a special sub-parameter space and converges to the intrinsic estimator, an estimable function in singular design, as the shrinkage penalty diminishes. The expansion of the ridge estimator and its variance are also obtained. This method is demonstrated through an application to age-period-cohort (APC) analysis of the incidence rates of cervical cancer in Ontario women 1960-1994.
引用
收藏
页码:263 / 278
页数:16
相关论文
共 17 条
[1]  
ARRAIZ GA, 1996, CANADIAN J PUBLIC HL, V81, P396
[2]   MODELS FOR TEMPORAL VARIATION IN CANCER RATES .2. AGE PERIOD COHORT MODELS [J].
CLAYTON, D ;
SCHIFFLERS, E .
STATISTICS IN MEDICINE, 1987, 6 (04) :469-481
[3]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[4]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[5]  
FU WJ, 1999, UNPUB
[6]   Penalized regressions: The bridge versus the lasso [J].
Fu, WJJ .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (03) :397-416
[7]  
Hocking R.R., 1996, METHODS APPL LINEAR
[8]   RIDGE REGRESSION - APPLICATIONS TO NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :69-&
[9]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&