Injectable hydrogel-based scaffolds for tissue engineering applications

被引:35
|
作者
Portnov, Tanya [2 ]
Shulimzon, Tiberiu R. [3 ]
Zilberman, Meital [1 ,2 ]
机构
[1] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Mat Sci & Engn, IL-69978 Tel Aviv, Israel
[3] Chaim Sheba Med Ctr, Pulm Inst, IL-52656 Tel Hashomer, Israel
关键词
alginate; gelatin; hydrogel; injectable scaf-folds; natural biomaterials; IN-VITRO CYTOTOXICITY; BIODEGRADABLE HYDROGELS; ALGINATE HYDROGELS; HYALURONIC-ACID; MYOCARDIAL-INFARCTION; EXTRACELLULAR-MATRIX; GRAFTED CHITOSAN; MICHAEL ADDITION; CROSS-LINKING; ADHESIVE;
D O I
10.1515/revce-2015-0074
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Hydrogels are highly hydrated materials that may absorb from 10% to 20% up to hundreds of times their dry weight in water and are composed of three-dimensional hydrophilic polymeric networks that are similar to those in natural tissue. The structural integrity of hydrogels depends on cross-links formed between the polymer chains. Hydrogels have been extensively explored as injectable cell delivery systems, owing to their high tissue-like water content, ability to mimic extracellular matrix, homogeneously encapsulated cells, efficient mass transfer, amenability to chemical and physical modifications, and minimally invasive delivery. A variety of naturally and synthetically derived materials have been used to form injectable hydrogels for tissue engineering applications. The current review article focuses on these biomaterials, on the design parameters of injectable scaffolds, and on the in situ gelling of their hydrogel systems. The last section of this article describes specific examples of catheter-based delivery systems.
引用
收藏
页码:91 / 107
页数:17
相关论文
共 50 条
  • [1] Catheter Injectable Hydrogel-Based Scaffolds for Tissue Engineering Applications in lung disease
    Shulimzon, Tiberiu R.
    Giladi, Shir
    Zilberman, Meital
    ISRAEL MEDICAL ASSOCIATION JOURNAL, 2020, 22 (12): : 736 - 740
  • [2] Biocompatibility of hydrogel-based scaffolds for tissue engineering applications
    Naahidi, Sheva
    Jafari, Mousa
    Logan, Megan
    Wang, Yujie
    Yuan, Yongfang
    Bae, Hojae
    Dixon, Brian
    Chen, P.
    BIOTECHNOLOGY ADVANCES, 2017, 35 (05) : 530 - 544
  • [3] Hydrogel-Based Scaffolds in Oral Tissue Engineering
    Ayala-Ham, Alfredo
    Lopez-Gutierrez, Jorge
    Bermudez, Mercedes
    Aguilar-Medina, Maribel
    Sarmiento-Sanchez, Juan Ignacio
    Lopez-Camarillo, Cesar
    Sanchez-Schmitz, Guzman
    Ramos-Payan, Rosalio
    FRONTIERS IN MATERIALS, 2021, 8
  • [4] Hydrogel-based scaffolds for bone and cartilage tissue engineering and regeneration
    Amiryaghoubi, Nazanin
    Fathi, Marziyeh
    Barar, Jaleh
    Omidi, Yadollah
    REACTIVE & FUNCTIONAL POLYMERS, 2022, 177
  • [5] Advances of injectable hydrogel-based scaffolds for cartilage regeneration
    Li, Jiawei
    Chen, Guojun
    Xu, Xingquan
    Abdou, Peter
    Jiang, Qing
    Shi, Dongquan
    Gu, Zhen
    REGENERATIVE BIOMATERIALS, 2019, 6 (03) : 129 - 140
  • [6] Hydrogel-Based Scaffolds: Advancing Bone Regeneration Through Tissue Engineering
    Quintero, Juan Luis Cota
    Ramos-Payan, Rosalio
    Romero-Quintana, Jose Geovanni
    Ayala-Ham, Alfredo
    Bermudez, Mercedes
    Aguilar-Medina, Elsa Maribel
    GELS, 2025, 11 (03)
  • [7] Novel Hydrogel Systems as Injectable Scaffolds for Tissue Engineering
    Joung, Yoon Ki
    Park, Ki Dong
    BIOMATERIALS IN ASIA: IN COMMEMORATION OF THE 1ST ASIAN BIOMATERIALS CONGRESS, 2008, : 222 - 233
  • [8] Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering
    Tolabi, Hamidreza
    Davari, Niyousha
    Khajehmohammadi, Mehran
    Malektaj, Haniyeh
    Nazemi, Katayoun
    Vahedi, Samaneh
    Ghalandari, Behafarid
    Reis, Rui L.
    Ghorbani, Farnaz
    Oliveira, Joaquim Miguel
    ADVANCED MATERIALS, 2023, 35 (26)
  • [9] Biofunctionalization of hydrogel-based scaffolds for vascular tissue regeneration
    Lopez-Gutierrez, Jorge
    Ramos-Payan, Rosalio
    Ayala-Ham, Alfredo
    Geovanni Romero-Quintana, Jose
    Castillo-Ureta, Hipolito
    Villegas-Mercado, Carlos
    Bermudez, Mercedes
    Sanchez-Schmitz, Guzman
    Aguilar-Medina, Maribel
    FRONTIERS IN MATERIALS, 2023, 10
  • [10] Hydrogel-based engineering of beige adipose tissue
    Vaicik, M. K.
    Morse, M.
    Blagajcevic, A.
    Rios, J.
    Larson, J. C.
    Yang, F.
    Cohen, R. N.
    Papavasiliou, G.
    Brey, E. M.
    JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (40) : 7903 - 7911